Chapter 1: Problem 63
Carry out each calculation, paying special attention to significant figures, rounding, and units: (a) \(\frac{4.32 \times 10^{7} \mathrm{~g}}{\frac{4}{3}(3.1416)\left(1.95 \times 10^{2} \mathrm{~cm}\right)^{3}}\) (The term \(\frac{4}{3}\) is exact.) (b) \(\frac{\left(1.84 \times 10^{2} \mathrm{~g}\right)(44.7 \mathrm{~m} / \mathrm{s})^{2}}{2}\) (The term 2 is exact.) (c) \(\frac{\left(1.07 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)^{2}\left(3.8 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)}{\left(8.35 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)\left(1.48 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)^{3}}\)
Short Answer
Step by step solution
Step 1a: Write Down the Given Values for Part (a)
Step 2a: Convert Units if Necessary
Step 3a: Calculate the Volume
Step 4a: Calculate the Density
Step 1b: Write Down the Given Values for Part (b)
Step 2b: Calculate the Kinetic Energy
Step 1c: Write Down the Given Values for Part (c)
Step 2c: Apply the Reaction Quotient Formula
Step 3c: Simplify the Expression
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
density calculation
\( \rho = \frac{m}{V} \)
where \( \rho \) is density, \( m \) is mass, and \( V \) is volume.
To understand how to use this formula, let's go through the given example from the exercise:
- Identify and write down the given values: Mass \( m = 4.32 \times 10^{7} \text{ g} \), Radius \( r = 1.95 \times 10^{2} \text{ cm} \)
- Use the formula for the volume of a sphere: \( V = \frac{4}{3}\pi r^3 \)
- Substitute \( \pi = 3.1416 \) and \( r = 1.95 \times 10^{2} \text{ cm} \)
- Calculate the volume: \( V = \frac{4}{3} \times 3.1416 \times (1.95 \times 10^{2})^3 = 3.09 \times 10^{7} \text{ cm}^3 \)
- Finally, solve for density: \( \rho = \frac{m}{V} = \frac{4.32 \times 10^{7} \text{ g}}{3.09 \times 10^{7} \text{ cm}^3} = 1.40 \text{ g/cm}^3 \)
kinetic energy formula
\( KE = \frac{1}{2}mv^2 \)
where \( KE \) is kinetic energy, \( m \) is mass, and \( v \) is velocity.
Let's go through the given example:
- Identify the provided values: Mass \( m = 1.84 \times 10^{2} \text{ g} \) and Velocity \( v = 44.7 \text{ m/s} \)
- Use the kinetic energy formula: \( KE = \frac{1}{2}mv^2 \)
- Substitute the values: \( KE = \frac{1.84 \times 10^{2} \text{ g}}{2} \times (44.7 \text{ m/s})^2 \)
- Calculate the kinetic energy: \( KE = 0.92 \times 10^{2} \times 1.998 \times 10^{3} \text{ g m}^2/\text{s}^2 = 1.84 \times 10^{5} \text{ g m}^2/\text{s}^2 \)
reaction quotient
\( Q = \frac{[C]^c[D]^d}{[A]^a[B]^b} \)
Let's go through the provided example:
- Identify and write down the values: \( [A] = 1.07 \times 10^{-4} \text{ mol/L} \), \( [B] = 3.8 \times 10^{-3} \text{ mol/L} \), \( [C] = 8.35 \times 10^{-5} \text{ mol/L} \), and \( [D] = 1.48 \times 10^{-2} \text{ mol/L} \)
- Apply the reaction quotient formula:
\( Q = \frac{[A]^2 [B]}{[C][D]^3} \) - Substitute the values: \( Q = \frac{(1.07 \times 10^{-4})^2 (3.8 \times 10^{-3})}{(8.35 \times 10^{-5}) (1.48 \times 10^{-2})^3} \)
- Simplify the exponents and terms: \( (1.07 \times 10^{-4})^2 = 1.1449 \times 10^{-8} \) and \( (1.48 \times 10^{-2})^3 = 3.24 \times 10^{-6} \)
- Calculate the final quotient: \( Q = \frac{1.1449 \times 10^{-8} \times 3.8 \times 10^{-3}}{8.35 \times 10^{-5} \times 3.24 \times 10^{-6}} = 1.35 \times 10^{1} \)