Chapter 17: Problem 22
What is a formation constant and what is an instability constant?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 17: Problem 22
What is a formation constant and what is an instability constant?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freePotassium oxide is readily soluble in water, but the resulting solution contains essentially no oxide ion. Explain, using an equation, what happens to the oxide ion.
Write the \(K_{\mathrm{sp}}\) expressions for each of the following compounds: (a) \(\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2},\) (b) \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\), (c) \(\mathrm{PbCrO}_{4}\) (d) \(\mathrm{Al}(\mathrm{OH})_{3}\), (e) \(\mathrm{ZnCO}_{3}\) (f) \(\mathrm{Zn}(\mathrm{OH})_{2}\)
Suppose that \(50.0 \mathrm{~mL}\) of \(0.12 \mathrm{M} \mathrm{AgNO}_{3}\) is added to \(50.0 \mathrm{~mL}\) of \(0.048 \mathrm{M} \mathrm{NaCl}\) solution. (a) What mass of \(\mathrm{AgCl}\) will form? (b) Calculate the final concentrations of all of the ions in the solution that is in contact with the precipitate. (c) What percentage of the \(\mathrm{Ag}^{+}\) ions have precipitated?
Suppose that some dipositive cation, \(M^{2+},\) is able to form a complex ion with a ligand, \(L\), by the following balanced equation: \(M^{2+}+2 L \rightleftharpoons M(\mathrm{~L})_{2}^{2+} .\) The cation also forms a sparingly soluble salt, \(M \mathrm{Cl}_{2}\). In which of the following circumstances would a given quantity of ligand be more able to bring larger quantities of the salt into solution? Explain and justify the calculation involved: (a) \(K_{\text {form }}=1 \times 10^{2}\) and \(K_{\text {sp }}=1 \times 10^{-15}\), (b) \(K_{\text {form }}=1 \times 10^{10}\) and \(K_{\mathrm{sp}}=1 \times 10^{-20}\).
Is \(\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) a basic salt? Justify your answer. $$ \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \rightleftharpoons 3 \mathrm{Ba}^{2+}(a q)+2 \mathrm{PO}_{4}^{3-}(a q) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.