Chapter 9: Problem 102
Butadiene, \(\mathrm{C}_{4} \mathrm{H}_{6},\) is a planar molecule that has the following carbon-carbon bond lengths: $$ \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{134 \mathrm{pm}} \mathrm{CH}=\mathrm{CH}_{2} $$ (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle \(\mathrm{C}-\mathrm{C}\) bond length in butadiene \((148 \mathrm{pm})\) is a little shorter than the average \(\mathrm{C}-\mathrm{C}\) single bond length (154 pm). Does this imply that the middle \(\mathrm{C}-\mathrm{C}\) bond in butadiene is weaker or stronger than the average \(\mathrm{C}-\mathrm{C}\) single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle \(\mathrm{C}-\mathrm{C}\) bond.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.