Chapter 5: Problem 123
Consider two solutions, the first being \(50.0 \mathrm{~mL}\) of \(1.00 \mathrm{M} \mathrm{CuSO}_{4}\) and the second \(50.0 \mathrm{~mL}\) of \(2.00 \mathrm{M} \mathrm{KOH} .\) When the two solutions are mixed in a constant-pressure calorimeter, a precipitate forms and the temperature of the mixture rises from 21.5 to \(27.7^{\circ} \mathrm{C} .(\mathbf{a})\) Before mixing, how many grams of Cu are present in the solution of \(\mathrm{CuSO}_{4}\) ? (b) Predict the identity of the precipitate in the reaction. (c) Write complete and net ionic equations for the reaction that occurs when the two solutions are mixed. \((\mathbf{d})\) From the calorimetric data, calculate \(\Delta H\) for the reaction that occurs on mixing. Assume that the calorimeter absorbs only a negligible quantity of heat, that the total volume of the solution is \(100.0 \mathrm{~mL},\) and that the specific heat and density of the solution after mixing are the same as those of pure water.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.