Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The hydrocarbons cyclohexane \(\left(\mathrm{C}_{6} \mathrm{H}_{12}(l), \Delta H_{f}^{\circ}=-156\right.\) \(\mathrm{kJ} / \mathrm{mol}\) ) and 1-hexene \(\left(\mathrm{C}_{6} \mathrm{H}_{12}(l), \Delta H_{f}^{\circ}=-74 \mathrm{~kJ} / \mathrm{mol}\right)\) have the same empirical formula. (a) Calculate the standard enthalpy change for the transformation of cyclohexane to 1-hexene. (b) Which has greater enthalpy, cyclohexane or 1-hexene? (c) Without doing a further calculation and knowing the answer to (b), do you expect cyclohexane or 1-hexene to have the larger combustion enthalpy?

Short Answer

Expert verified
(a) The standard enthalpy change for the transformation of cyclohexane to 1-hexene is 82 kJ/mol. (b) Cyclohexane has a greater enthalpy. (c) We can expect cyclohexane to have the larger combustion enthalpy compared to 1-hexene.

Step by step solution

01

Calculate the standard enthalpy change for the transformation

In order to calculate the standard enthalpy change for the transformation of cyclohexane to 1-hexene, use the standard enthalpy of formation values: \(\Delta H_{f}^{\circ}(\mathrm{C}_{6} \mathrm{H}_{12}(l))\) \[ \Delta H_{transformation} = \Delta H_f^{\circ} (1\text{-hexene}) - \Delta H_f^{\circ} (\text{cyclohexane}) \] Plug in the given values: \[ \Delta H_{transformation} = (-74 \,\mathrm{kJ/mol}) - (-156\, \mathrm{kJ/mol}) \]
02

Solve for the enthalpy change

Add the values to get the enthalpy change of the transformation: \[ \Delta H_{transformation} = 82\, \mathrm{kJ/mol} \] (a) The standard enthalpy change for the transformation of cyclohexane to 1-hexene is 82 kJ/mol.
03

Compare enthalpies

Compare the standard enthalpy of formation values provided in the exercise. We have: \[ \Delta H_f^{\circ} (\text{cyclohexane}) = -156\, \mathrm{kJ/mol} \] \[ \Delta H_f^{\circ} (1\text{-hexene}) = -74\, \mathrm{kJ/mol} \] A more negative enthalpy of formation indicates a more stable compound. (b) Since the enthalpy of formation of cyclohexane is more negative than that of 1-hexene, cyclohexane has a greater enthalpy.
04

Predict combustion enthalpy

Knowing that cyclohexane has greater enthalpy (more stable) and without calculating the actual combustion enthalpies, we can expect a more stable compound to release more energy upon combustion. (c) Therefore, we can expect cyclohexane to have the larger combustion enthalpy compared to 1-hexene.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Standard Enthalpy of Formation
The standard enthalpy of formation, denoted as \( \Delta H_f^{\circ} \), is a fundamental concept in thermochemistry. It represents the enthalpy change when one mole of a compound is formed from its elements in their standard states.
This value is crucial because it provides a reference point for calculating the enthalpy changes in chemical reactions. For example, the standard enthalpy of formation for cyclohexane is \(-156\, \text{kJ/mol}\), meaning that forming 1 mole of cyclohexane from carbon and hydrogen releases 156 kJ of energy.
Values of \( \Delta H_f^{\circ} \) are typically negative for stable compounds, indicating that energy is released when the compound forms. A more negative \( \Delta H_f^{\circ} \) implies greater stability of the compound compared to others with similar molecular makeup. Thus, when comparing compounds, such as cyclohexane and 1-hexene, the compound with the more negative \( \Delta H_f^{\circ} \) is usually more energy-efficient and stable.
In context, since cyclohexane has a \( \Delta H_f^{\circ} \) of \(-156\, \text{kJ/mol}\) and 1-hexene has \(-74\, \text{kJ/mol}\), cyclohexane is more stable.
Hydrocarbons
Hydrocarbons are organic compounds made up entirely of carbon and hydrogen atoms. They serve as a primary source of energy and are the fundamental building blocks for complex organic molecules.
Cyclohexane and 1-hexene are examples of hydrocarbons, both with the chemical formula \( \text{C}_6\text{H}_{12}\). However, despite having the same molecular formula, the two compounds have different structures and properties.
Cyclohexane is a saturated hydrocarbon, forming a ring structure that doesn't contain any double bonds. In contrast, 1-hexene is an unsaturated hydrocarbon, with a linear chain and a double bond which contributes to its different chemical behavior.
Such structural variations lead to differences in their standard enthalpy of formations and stability. Understanding these differences helps explain why different hydrocarbons release varying amounts of energy when burned, making it a critical aspect of fields like energy production and material science.
Combustion Enthalpy
Combustion enthalpy, or the heat of combustion, is the amount of energy released when one mole of a substance fully reacts with oxygen under standard conditions. This concept is central to the study of energy released from fuels.
The heat released during combustion can be better understood using the concepts of stability and enthalpy of formation. More stable compounds often have higher (more negative) \( \Delta H_f^{\circ} \) and tend to release more energy upon combustion. Thus, even without direct calculation, comparing enthalpies provides insight into combustion characteristics.
In the given exercise, cyclohexane, with a more negative enthalpy of formation than 1-hexene, can be expected to have a higher combustion enthalpy. This implies it potentially releases more energy when burned, which is a significant factor in industries where hydrocarbons are used as fuel sources.
Understanding how different hydrocarbons behave during combustion helps us discern which compounds offer more energetic outputs, guiding the selection of fuels for various applications.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

From the enthalpies of reaction $$ \begin{aligned} 2 \mathrm{C}(s)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{CO}(g) & \Delta H=-221.0 \mathrm{~kJ} \\ 2 \mathrm{C}(s)+\mathrm{O}_{2}(g)+4 \mathrm{H}_{2}(g) & \longrightarrow & 2 \mathrm{CH}_{3} \mathrm{OH}(g) & \Delta H=-402.4 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(g) $$

A sample of a hydrocarbon is combusted completely in \(\mathrm{O}_{2}(g)\) to produce \(21.83 \mathrm{~g} \mathrm{CO}_{2}(g), 4.47 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(g),\) and \(311 \mathrm{~kJ}\) of heat. (a) What is the mass of the hydrocarbon sample that was combusted? (b) What is the empirical formula of the hydrocarbon? (c) Calculate the value of \(\Delta H_{f}^{\circ}\) per empiricalformula unit of the hydrocarbon. (d) Do you think that the hydrocarbon is one of those listed in Appendix C? Explain your answer.

At the end of 2012, global population was about 7.0 billion people. What mass of glucose in kg would be needed to provide 1500 Cal/person/day of nourishment to the global population for one year? Assume that glucose is metabolized entirely to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(l)\) according to the following thermochemical equation: $$ \begin{aligned} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H^{\circ} &=-2803 \mathrm{~kJ} \end{aligned} $$

A 2.20-g sample of phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)\) was burned in a bomb calorimeter whose total heat capacity is \(11.90 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} .\) The temperature of the calorimeter plus contents increased from 21.50 to \(27.50^{\circ} \mathrm{C} .(\mathbf{a})\) Write a balanced chemical equation for the bomb calorimeter reaction. (b) What is the heat of combustion per gram of phenol and per mole of phenol?

Consider a system consisting of the following apparatus, in which gas is confined in one flask and there is a vacuum in the other flask. The flasks are separated by a valve. Assume that the flasks are perfectly insulated and will not allow the flow of heat into or out of the flasks to the surroundings. When the valve is opened, gas flows from the filled flask to the evacuated one. (a) Is work performed during the expansion of the gas? (b) Why or why not? (c) Can you determine the value of \(\Delta E\) for the process?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free