Chapter 5: Problem 106
A coffee-cup calorimeter of the type shown in Figure 5.18 contains \(150.0 \mathrm{~g}\) of water at \(25.2^{\circ} \mathrm{C}\). A \(200-\mathrm{g}\) block of silver metal is heated to \(100.5^{\circ} \mathrm{C}\) by putting it in a beaker of boiling water. The specific heat of \(\mathrm{Ag}(s)\) is \(0.233 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})\). The \(\mathrm{Ag}\) is added to the calorimeter, and after some time the contents of the cup reach a constant temperature of \(30.2^{\circ} \mathrm{C} .(\mathbf{a})\) Determine the amount of heat, in J, lost by the silver block. (b) Determine the amount of heat gained by the water. The specific heat of water is \(4.184 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K}) .(\mathbf{c})\) The difference between your answers for (a) and (b) is due to heat loss through the Styrofoam \(^{\circ}\) cups and the heat necessary to raise the temperature of the inner wall of the apparatus. The heat capacity of the calorimeter is the amount of heat necessary to raise the temperature of the apparatus (the cups and the stopper) by \(1 \mathrm{~K} .\) Calculate the heat capacity of the calorimeter in \(\mathrm{J} / \mathrm{K}\). (d) What would be the final temperature of the system if all the heat lost by the silver block were absorbed by the water in the calorimeter?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.