Chapter 4: Problem 72
Calculate the concentration of each ion in the following solutions obtained by mixing: (a) \(32.0 \mathrm{~mL}\) of \(0.30 \mathrm{M} \mathrm{KMnO}_{4}\) (b) \(60.0 \mathrm{~mL}\) of \(0.100 \mathrm{M} \mathrm{ZnCl}_{2}^{+}\) with \(15.0 \mathrm{~mL}\) of \(0.60 \mathrm{MKMnO}_{4}\) with \(5.0 \mathrm{~mL}\) of \(0.200 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2},(\mathbf{c}) 4.2 \mathrm{~g}\) of \(\mathrm{CaCl}_{2}\) in \(150.0 \mathrm{~mL}\) of \(0.02 M \mathrm{KCl}\) solution. Assume that the volumes are additive.
Short Answer
Step by step solution
(a) Calculate moles of each ion in the solution of KMnO4
(a) Calculate moles of each ion in the mixture
(a) Calculate the concentration of each ion
(b) Mixing ZnCl2 and Zn(NO3)2 solutions
(c) Mixing CaCl2 and KCl solutions
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Molarity
- Molarity (M) = \(\frac{\text{moles of solute}}{\text{liters of solution}}\)
Let's take an example: Upon mixing different solutions, as shown in the original exercise, understanding the molarity aids in determining the concentration of each resulting ion, like potassium ions \(\text{K}^+\) or chloride ions \(\text{Cl}^-\). Knowing the molarity not only allows us to predict the exact concentration of each substance present after the mixing but also caters to practicing safe and efficient chemical reactions by ensuring proper balance and proportions.
Mole Concept
Here's why it's helpful:
- The mole concept relates the mass of a substance to the amount of substance, providing a bridge between the atomic scale and the grams you weigh in the lab.
- It aids in calculating the reactants needed and products formed in a reaction.
Chemical Solutions
- Homogeneous - Uniform throughout, like salt dissolved in water.
- Heterogeneous - Non-uniform, such as oil in water.
Here are some simplified steps on working with chemical solutions:
- Calculate the amount of solute needed using molarity, as shown in the earlier steps.
- Mix solute and solvent carefully, ensuring complete dissolution for accurate reaction results.
- Consider factors like temperature and mixing time for proper solute integration.