Chapter 20: Problem 78
In some applications nickel-cadmium batteries have been replaced by nickel- zinc batteries. The overall cell reaction for this relatively new battery is: $$ \begin{aligned} 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{NiO}(\mathrm{OH})(s) &+\mathrm{Zn}(s) \\\ & \longrightarrow 2 \mathrm{Ni}(\mathrm{OH})_{2}(s)+\mathrm{Zn}(\mathrm{OH})_{2}(s) \end{aligned} $$ (a)What is the cathode half-reaction? (b) What is the anode half-reaction? (c) A single nickel-cadmium cell has a voltage of \(1.30 \mathrm{~V}\). Based on the difference in the standard reduction potentials of \(\mathrm{Cd}^{2+}\) and \(\mathrm{Zn}^{2+}\), what voltage would you estimate a nickel-zinc battery will produce? (d) Would you expect the specific energy density of a nickel-zinc battery to be higher or lower than that of a nickel-cadmium battery?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.