Chapter 2: Problem 90
The diameter of a rubidium atom is \(495 \mathrm{pm}\) We will consider two different ways of placing the atoms on a surface. In arrangement A, all the atoms are lined up with one another to form a square grid. Arrangement B is called a close-packed arrangement because the atoms sit in the "depressions" formed by the previous row of atoms: (a) Using arrangement A, how many Rb atoms could be placed on a square surface that is \(1.0 \mathrm{~cm}\) on a side? \((\mathbf{b})\) How many \(\mathrm{Rb}\) atoms could be placed on a square surface that is \(1.0 \mathrm{~cm}\) on a side, using arrangement B? (c) By what factor has the number of atoms on the surface increased in going to arrangement \(\mathrm{B}\) from arrangement A? If extended to three dimensions, which arrangement would lead to a greater density for Rb metal?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.