Chapter 18: Problem 39
The enthalpy of evaporation of water is \(40.67 \mathrm{~kJ} / \mathrm{mol}\). Sunlight striking Earth's surface supplies \(168 \mathrm{~W}\) per square meter \((1 \mathrm{~W}=1 \mathrm{watt}=1 \mathrm{~J} / \mathrm{s}) .(\mathbf{a})\) Assuming that evaporation of water is due only to energy input from the Sun, calculate how many grams of water could be evaporated from a 1.00 square meter patch of ocean over a 12 -h day. (b) The specific heat capacity of liquid water is \(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\). If the initial surface temperature of a 1.00 square meter patch of ocean is \(26^{\circ} \mathrm{C}\), what is its final temperature after being in sunlight for \(12 \mathrm{~h}\), assuming no phase changes and assuming that sunlight penetrates uniformly to depth of \(10.0 \mathrm{~cm} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.