Chapter 14: Problem 98
(a) The reaction \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+\) \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)\) is first order with in \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)\) and zero-order in \(\mathrm{H}_{2} \mathrm{O}\). At \(300 \mathrm{~K}\) the rate constant equals \(3.30 \times 10^{-2} \mathrm{~min}^{-1} .\) Calculate the half- life at this temperature. \((\mathbf{b})\) If the activation energy for this reaction is \(80.0 \mathrm{~kJ} / \mathrm{mol}\), at what temperature would the reaction rate be doubled?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.