Chapter 14: Problem 91
The reaction \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\) is second order in \(\mathrm{NO}\) and first order in \(\mathrm{O}_{2} .\) When \([\mathrm{NO}]=0.040 \mathrm{M}\) and \(\left[\mathrm{O}_{2}\right]=0.035 \mathrm{M},\) the observed rate of disappearance of \(\mathrm{NO}\) is \(9.3 \times 10^{-5} \mathrm{M} / \mathrm{s} .(\mathbf{a})\) What is the rate of disappearance of \(\mathrm{O}_{2}\) at this moment? (b) What is the value of the rate constant? (c) What are the units of the rate constant? (d) What would happen to the rate if the concentration of NO were increased by a factor of \(1.8 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.