Chapter 14: Problem 90
Hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\) is a common and troublesome pollutant in industrial wastewaters. One way to remove \(\mathrm{H}_{2} \mathrm{~S}\) is to treat the water with chlorine, in which case the following reaction occurs: $$ \mathrm{H}_{2} \mathrm{~S}(a q)+\mathrm{Cl}_{2}(a q) \longrightarrow \mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) $$ The rate of this reaction is first order in each reactant. The rate constant for the disappearance of \(\mathrm{H}_{2} \mathrm{~S}\) at \(30{ }^{\circ} \mathrm{C}\) is \(4.0 \times 10^{-2} M^{-1} \mathrm{~s}^{-1}\). If at a given time the concentration of \(\mathrm{H}_{2} \mathrm{~S}\) is \(2.5 \times 10^{-4} \mathrm{M}\) and that of \(\mathrm{Cl}_{2}\) is \(2.0 \times 10^{-2} \mathrm{M},\) what is the rate of formation of \(\mathrm{H}^{+}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.