Chapter 14: Problem 29
The decomposition reaction of \(\mathrm{N}_{2} \mathrm{O}_{5}\) in carbon tetrachloride is \(2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\). The rate law is first order in \(\mathrm{N}_{2} \mathrm{O}_{5}\). At \(55^{\circ} \mathrm{C}\) the rate constant is \(4.12 \times 10^{-3} \mathrm{~s}^{-1}\). (a) Write the rate law for the reaction. (b) What is the rate of reaction when \(\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.050 \mathrm{M} ?(\mathbf{c})\) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is tripled to \(0.150 \mathrm{M}\) ? (d) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is reduced by \(10 \%\) to \(0.045 \mathrm{M}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.