Chapter 13: Problem 111
The following table presents the solubilities of several gases in water at \(25^{\circ} \mathrm{C}\) under a total pressure of gas and water vapor of 101.3 kPa. (a) What volume of \(\mathrm{CH}_{4}(g)\) under standard conditions of temperature and pressure is contained in \(4.0 \mathrm{~L}\) of a saturated solution at \(25^{\circ} \mathrm{C} ?\) (b) The solubilities (in water) of the hydrocarbons are as follows: methane \(<\) ethane \(<\) ethylene. Is this because ethylene is the most polar molecule? (c) What intermolecular interactions can these hydrocarbons have with water? (d) Draw the Lewis dot structures for the three hydrocarbons. Which of these hydrocarbons possess \(\pi\) bonds? Based on their solubilities, would you say \(\pi\) bonds are more or less polarizable than \(\sigma\) bonds? (e) Explain why NO is more soluble in water than either \(\mathrm{N}_{2}\) or \(\mathrm{O}_{2} .\) (f) \(\mathrm{H}_{2} \mathrm{~S}\) is more water-soluble than almost all the other gases in table. What intermolecular forces is \(\mathrm{H}_{2} \mathrm{~S}\) likely to have with water? \((\mathbf{g}) \mathrm{SO}_{2}\) is by far the most water-soluble gas in table. What intermolecular forces is \(\mathrm{SO}_{2}\) likely to have with water? $$ \begin{array}{lc} \hline \text { Gas } & \text { Solubility (mM) } \\ \hline \mathrm{CH}_{4} \text { (methane) } & 1.3 \\ \mathrm{C}_{2} \mathrm{H}_{6} \text { (ethane) } & 1.8 \\ \mathrm{C}_{2} \mathrm{H}_{4} \text { (ethylene) } & 4.7 \\ \mathrm{~N}_{2} & 0.6 \\ \mathrm{O}_{2} & 1.2 \\ \mathrm{NO} & 1.9 \\ \mathrm{H}_{2} \mathrm{~S} & 99 \\ \mathrm{SO}_{2} & 1476 \\ \hline \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.