Chapter 13: Problem 107
At ordinary body temperature \(\left(37^{\circ} \mathrm{C}\right),\) the solubility of \(\mathrm{N}_{2}\) in water at ordinary atmospheric pressure is \(0.015 \mathrm{~g} / \mathrm{L}\) Air is approximately \(78 \mathrm{~mol} \% \mathrm{~N}_{2}\). (a) Calculate the number of moles of \(\mathrm{N}_{2}\) dissolved per liter of blood, assuming blood is a simple aqueous solution. (b) At a depth of \(30.5 \mathrm{~m}\) in water, the external pressure is \(405 \mathrm{kPa}\). What is the solubility of \(\mathrm{N}_{2}\) from air in blood at this pressure? (c) If a scuba diver suddenly surfaces from this depth, how many milliliters of \(\mathrm{N}_{2}\) gas, in the form of tiny bubbles, are released into the bloodstream from each liter of blood?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.