Chapter 10: Problem 46
The physical fitness of athletes is measured by \({ }^{4} V_{\mathrm{O}_{2}}\) max," which is the maximum volume of oxygen consumed by an individual during incremental exercise (for example, on a treadmill). An average male has a \(V_{\mathrm{O}_{2}}\) max of \(45 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{kg}\) body mass \(/ \mathrm{min}\), but a world-class male athlete can have a \(V_{\mathrm{O}_{2}}\) max reading of \(88.0 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{kg}\) body mass/min. (a) Calculate the volume of oxygen, in mL, consumed in \(1 \mathrm{hr}\) by an average man who weighs \(85 \mathrm{~kg}\) and has a \(V_{\mathrm{O}_{2}}\) max reading of \(47.5 \mathrm{~mL}\) \(\mathrm{O}_{2} / \mathrm{kg}\) body mass \(/ \mathrm{min} .(\mathbf{b})\) If this man lost \(10 \mathrm{~kg},\) exercised, and increased his \(V_{\mathrm{O}_{2}}\) max to \(65.0 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{kg}\) body mass \(/ \mathrm{min}\), how many mL of oxygen would he consume in \(1 \mathrm{hr} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.