The table below shows some physical properties of compounds containing O-H
groups. \begin{tabular}{lccc}
\hline Liquid & Molecular Weight & Experimental Dipole Moment & Boiling Point
\\\
\hline \(\mathrm{CH}_{3} \mathrm{OH}\) & 32.04 & 1.7 & \(64.7^{\circ} \mathrm{C}\)
\\\
\(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) & 74.12 & 1.66 &
\(117.7^{\circ} \mathrm{C}\) \\
\(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) & 62.07 & 1.5 & \(197.3^{\circ}
\mathrm{C}\) \\
\hline
\end{tabular}
Which of the following statements best explains these data?
(a) The larger the dipole moment, the stronger the intermolecular forces, and
therefore the boiling point is lowest for the molecule with the largest dipole
moment. (b) The dispersion forces increase from \(\mathrm{CH}_{3} \mathrm{OH}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) and
\(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\); since the boiling point also
increases in this order, the dispersion forces must be the major contributing
factor for the boiling point trend; \((\mathbf{c}) \mathrm{HOCH}_{2}
\mathrm{CH}_{2} \mathrm{OH}\) has two groups capable of hydrogen bonding per
molecule, whereas \(\mathrm{CH}_{3} \mathrm{OH}\) and \(\mathrm{CH}_{3}
\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) have only one; therefore,
\(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) has the highest boiling point.