Chapter 9: Problem 71
Determine the electron configurations for \(\mathrm{CN}^{+}, \mathrm{CN}\), and \(\mathrm{CN}^{-}\). (a) Which species has the strongest \(\mathrm{C}-\mathrm{N}\) bond? (b) Which species, if any, has unpaired electrons?
Chapter 9: Problem 71
Determine the electron configurations for \(\mathrm{CN}^{+}, \mathrm{CN}\), and \(\mathrm{CN}^{-}\). (a) Which species has the strongest \(\mathrm{C}-\mathrm{N}\) bond? (b) Which species, if any, has unpaired electrons?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe nitrogen atoms in \(\mathrm{N}_{2}\) participate in multiple bonding, whereas those in hydrazine, \(\mathrm{N}_{2} \mathrm{H}_{4}\), do not. (a) Draw Lewis structures for both molecules. (b) What is the hybridization of the nitrogen atoms in each molecule? (c) Which molecule has a stronger \(\mathrm{N}-\mathrm{N}\) bond?
Give the electron-domain and molecular geometries of a molecule that has the following electron domains on its central atom: (a) four bonding domains and no nonbonding domains, (b) three bonding domains and two nonbonding domains, (c) five bonding domains and one nonbonding domain, (e) four bonding domains and two nonbonding domains.
In ozone, \(\mathrm{O}_{3}\), the two oxygen atoms on the ends of the molecule are equivalent to one another. (a) What is the best choice of hybridization scheme for the atoms of ozone? (b) For one of the resonance forms of ozone, which of the orbitals are used to make bonds and which are used to hold nonbonding pairs of electrons? (c) Which of the orbitals can be used to delocalize the \(\pi\) electrons? (d) How many electrons are delocalized in the \(\pi\) system of ozone?
What are the electron-domain and molecular geometries of a molecule that has the following electron domains on its central atom? (a) three bonding domains and no nonbonding domains, (b) three bonding domains and one nonbonding domain, (c) two bonding domains and two nonbonding domains.
The vertices of a tetrahedron correspond to four alternating corners of a cube. By using analytical geometry, demonstrate that the angle made by connecting two of the vertices to a point at the center of the cube is \(109.5^{\circ}\), the characteristic angle for tetrahedral molecules.
What do you think about this solution?
We value your feedback to improve our textbook solutions.