Chapter 9: Problem 59
(a) What is the difference between hybrid orbitals and molecular orbitals? (b) How many electrons can be placed into each MO of a molecule? (c) Can antibonding molecular orbitals have electrons in them?
Chapter 9: Problem 59
(a) What is the difference between hybrid orbitals and molecular orbitals? (b) How many electrons can be placed into each MO of a molecule? (c) Can antibonding molecular orbitals have electrons in them?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) How does one determine the number of electron domains in a molecule or ion? (b) What is the difference between a bonding electron domain and a nonbonding electron domain?
The vertices of a tetrahedron correspond to four alternating corners of a cube. By using analytical geometry, demonstrate that the angle made by connecting two of the vertices to a point at the center of the cube is \(109.5^{\circ}\), the characteristic angle for tetrahedral molecules.
The three species \(\mathrm{NH}_{2}^{-} \mathrm{NH}_{3}\), and \(\mathrm{NH}_{4}{ }^{+}\) have \(\mathrm{H}-\mathrm{N}-\mathrm{H}\) bond angles of \(105^{\circ}, 107^{\circ}\), and \(109^{\circ}\), respec- tively. Explain this variation in bond angles.
(a) What is the probability of finding an electron on the internuclear axis if the electron occupies a \(\pi\) molecular orbital? (b) For a homonuclear diatomic molecule, what similarities and differences are there between the \(\pi_{2 p}\) MO made from the \(2 p_{x}\) atomic orbitals and the \(\pi_{2 p}\) MO made from the \(2 p_{y}\) atomic orbitals? (c) Why are the \(\pi_{2 p}\) MOs lower in energy than the \(\pi_{2 p}^{*}\) MOs?
Many compounds of the transition-metal elements contain direct bonds between metal atoms. We will assume that the \(z\) -axis is defined as the metal-metal bond axis. (a) Which of the \(3 d\) orbitals (Figure 6.24) can be used to make a \(\sigma\) bond between metal atoms? (b) Sketch the \(\sigma_{3 d}\) bonding and \(\sigma_{3 d}^{*}\) antibonding MOs. (c) With reference to the "Closer Look" box on the phases of orbitals, explain why a node is generated in the \(\sigma_{3 d}^{*}\) MO. (d) Sketch the energy-level diagram for the \(\mathrm{Sc}_{2}\) molecule, assuming that only the \(3 d\) orbital from part (a) is important. (e) What is the bond order in \(\mathrm{Sc}_{2}\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.