Chapter 9: Problem 31
(a) Does \(\mathrm{SCl}_{2}\) have a dipole moment? If so, in which direction does the net dipole point? (b) Does \(\mathrm{BeCl}_{2}\) have a dipole moment? If so, in which direction does the net dipole point?
Chapter 9: Problem 31
(a) Does \(\mathrm{SCl}_{2}\) have a dipole moment? If so, in which direction does the net dipole point? (b) Does \(\mathrm{BeCl}_{2}\) have a dipole moment? If so, in which direction does the net dipole point?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Explain why the following ions have different bond angles: \(\mathrm{ClO}_{2}^{-}\) and \(\mathrm{NO}_{2}^{-}\). Predict the bond angle in each case. (b) Explain why the \(\mathrm{XeF}_{2}\) molecule is linear and not bent.
(a) What does the term diamagnetism mean? (b) How does a diamagnetic substance respond to a magnetic field? (c) Which of the following ions would you expect to be diamagnetic: \(\mathrm{N}_{2}{ }^{2-}, \mathrm{O}_{2}^{2-}, \mathrm{Be}_{2}{ }^{2+}, \mathrm{C}_{2}^{-}\) ?
You can think of the bonding in the \(\mathrm{Cl}_{2}\) molecule in several ways. For example, you can picturethe Cl- -Cl bond containing two electrons that each come from the \(3 p\) orbitals of a \(\mathrm{Cl}\) atom that are pointing in the appropriate direction. However, you can also think about hybrid orbitals. (a) Draw the Lewis structure of the \(\mathrm{Cl}_{2}\) molecule. (b) What is the hybridization of each Cl atom? (c) What kind of orbital overlap, in this view, makes the \(\mathrm{Cl}-\mathrm{Cl}\) bond? (d) Imagine if you could measure the positions of the lone pairs of electrons in \(\mathrm{Cl}_{2}\). How would you distinguish between the atomic orbital and hybrid orbital models of bonding using that knowledge? (e) You can also treat \(\mathrm{Cl}_{2}\) using molecular orbital theory to obtain an energy level diagram similar to that for \(\mathrm{F}_{2}\). Design an experiment that could tell you if the MO picture of \(\mathrm{Cl}_{2}\) is the best one, assuming you could easily measure bond lengths, bond energies, and the light absorption properties for any ionized species.
(a) Explain why \(\mathrm{BrF}_{4}^{-}\) is square planar, whereas \(\mathrm{BF}_{4}^{-}\) is tetrahedral. (b) Water, \(\mathrm{H}_{2} \mathrm{O}\), is a bent molecule. Predict the shape of the molecular ion formed from the water molecule if you were able to remove four electrons to make \(\left(\mathrm{H}_{2} \mathrm{O}\right)^{4+}\).
Predict the trend in the \(\mathrm{F}\) (axial) \(-\mathrm{A}-\mathrm{F}\) (equatorial) bond angle in the following \(\mathrm{AF}_{n}\) molecules: \(\mathrm{PF}_{5}, \mathrm{SF}_{4}\), and \(\mathrm{ClF}_{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.