Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Imagine that you are climbing a mountain. (a) Is the distance you travel to the top a state function? Why or why not? (b) Is the change in elevation between your base camp and the peak a state function? Why or why not? [Section 5.2]

Short Answer

Expert verified
(a) The distance traveled to the top of the mountain is not a state function because it can vary based on the path taken. (b) The change in elevation between the base camp and the peak is a state function because it remains the same regardless of the route taken.

Step by step solution

01

(a) Distance traveled as a state function

In order to determine if the distance traveled to the top of the mountain is a state function, we need to analyze whether the distance depends on the path taken or not. It is crucial to realize that a person could take several different paths up the mountain (direct path, zigzagging, etc.), which could result in different lengths of distance traveled. Since the distance traveled to the top of the mountain can vary based on the path taken, it is not a state function.
02

(b) Change in elevation as a state function

Now we will assess if the change in elevation between the base camp and the peak is a state function. Unlike the distance traveled, the change in elevation is not concerned with the path taken; it is solely concerned with the difference in height between the starting point and the ending point. The change in elevation between the base camp and the peak remains the same regardless of the route taken. Therefore, the change in elevation between the base camp and the peak is a state function.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following reaction: $$ 2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{MgO}(s) \quad \Delta H=-1204 \mathrm{~kJ} $$ (a) Is this reaction exothermic or endothermic? (b) Calculate the amount of heat transferred when \(2.4 \mathrm{~g}\) of \(\mathrm{Mg}(\mathrm{s})\) reacts at constant pressure. (c) How many grams of \(\mathrm{MgO}\) are produced during an enthalpy change of \(-96.0 \mathrm{~kJ} ?\) (d) How many kilojoules of heat are absorbed when \(7.50 \mathrm{~g}\) of \(\mathrm{MgO}(s)\) is decomposed into \(\mathrm{Mg}(\mathrm{s})\) and \(\mathrm{O}_{2}(g)\) at constant pressure?

Under constant-volume conditions the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(2.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increased from \(20.55^{\circ} \mathrm{C}\) to \(23.25^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?

Thestandard enthalpies of formation of gaseous propyne \(\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\), propylene \(\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)\), and propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\) are \(+185.4,+20.4\), and \(-103.8 \mathrm{~kJ} / \mathrm{mol}\), respectively. (a) Calculate the heat evolved per mole on combustion of each substance to yield \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\) (b) Calculate the heat evolved on combustion of \(1 \mathrm{~kg}\) of each substance. (c) Which is the most efficient fuel in terms of heat evolved per unit mass?

Burning methane in oxygen can produce three different carbon-containing products: soot (very fine particles of graphite), \(\mathrm{CO}(\mathrm{g})\), and \(\mathrm{CO}_{2}(\mathrm{~g})\). (a) Write three balanced equations for the reaction of methane gas with oxygen to produce these three products. In each case assume that \(\mathrm{H}_{2} \mathrm{O}(l)\) is the only other product. (b) Determine the standard enthalpies for the reactions in part (a). (c) Why, when the oxygen supply is adequate, is \(\mathrm{CO}_{2}(g)\) the predominant carbon- containing product of the combustion of methane?

Calculate \(\Delta E\), and determine whether the process is endothermic or exothermic for the following cases: (a) A system absorbs \(105 \mathrm{~kJ}\) of heat from its surroundings while doing \(29 \mathrm{~kJ}\) of work on the surroundings; (b) \(q=1.50 \mathrm{~kJ}\) and \(w=-657 \mathrm{~J} ;\) (c) the system releases \(57.5 \mathrm{~kJ}\) of heat while doing \(22.5 \mathrm{~kJ}\) of work on the surroundings.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free