Chapter 5: Problem 23
(a) State the first law of thermodynamics. (b) What is meant by the internal energy of a system? (c) By what means can the internal energy of a closed system increase?
Chapter 5: Problem 23
(a) State the first law of thermodynamics. (b) What is meant by the internal energy of a system? (c) By what means can the internal energy of a closed system increase?
All the tools & learning materials you need for study success - in one app.
Get started for freeDoes \(\Delta H_{\mathrm{rxn}}\) for the reaction represented by the following equation equal the standard enthalpy of formation for \(\mathrm{CH}_{3} \mathrm{OH}(l) ?\) Why or why not? [Section 5.7] $$ \mathrm{C}(\text { graphite })+4 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(l) $$
Consider two solutions, the first being \(50.0 \mathrm{~mL}\) of \(1.00 \mathrm{M}\) \(\mathrm{CuSO}_{4}\) and the second \(50.0 \mathrm{~mL}\) of \(2.00 \mathrm{M} \mathrm{KOH}\). When the two solutions are mixed in a constant- pressure calorimeter, a precipitate forms and the temperature of the mixture rises from \(21.5^{\circ} \mathrm{C}\) to \(27.7{ }^{\circ} \mathrm{C}\). (a) Before mixing, how many grams of Cu are present in the solution of \(\mathrm{CuSO}_{4} ?(\mathrm{~b})\) Predict the identity of the precipitate in the reaction. (c) Write complete and net ionic equations for the reaction that occurs when the two solutions are mixed. (d) From the calorimetric data, calculate \(\Delta H\) for the reaction that occurs on mixing. Assume that the calorimeter absorbs only a negligible quantity of heat, that the total volume of the solution is \(100.0 \mathrm{~mL}\), and that the specific heat and density of the solution after mixing are the same as that of pure water.
Limestone stalactites and stalagmites are formed in caves by the following reaction: $$ \mathrm{Ca}^{2+}(a q)+2 \mathrm{HCO}_{3}^{-}(a q) \longrightarrow $$ If 1 mol of \(\mathrm{CaCO}_{3}\) forms at \(298 \mathrm{~K}\) under 1 atm pressure, the reaction performs \(2.47 \mathrm{~kJ}\) of \(P-V\) work, pushing back the atmosphere as the gaseous \(\mathrm{CO}_{2}\) forms. At the same time, \(38.95 \mathrm{~kJ}\) of heat is absorbed from the environment. What are the values of \(\Delta H\) and of \(\Delta E\) for this reaction?
Which will release more heat as it cools from \(50^{\circ} \mathrm{C}\) to \(25^{\circ} \mathrm{C}, 1 \mathrm{~kg}\) of water or \(1 \mathrm{~kg}\) of aluminum? How do you know? [Section 5.5]
A sample of a hydrocarbon is combusted completely in \(\mathrm{O}_{2}(g)\) to produce \(21.83 \mathrm{~g} \mathrm{CO}_{2}(g), 4.47 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(g)\), and \(311 \mathrm{~kJ}\) of heat. (a) What is the mass of the hydrocarbon sample that was combusted? (b) What is the empirical formula of the hydrocarbon? (c) Calculate the value of \(\Delta H_{f}^{\circ}\) per empirical-formula unit of the hydrocarbon. (d) Do you think that the hydrocarbon is one of those listed in Appendix C? Explain your answer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.