Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The fermentation of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) produces ethyl alcohol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) and \(\mathrm{CO}_{2}\) : $$ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+2 \mathrm{CO}_{2}(g) $$ (a) How many moles of \(\mathrm{CO}_{2}\) are produced when \(0.400\) mol of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) reacts in this fashion? (b) How many grams of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) are needed to form \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) ? (c) How many grams of \(\mathrm{CO}_{2}\) form when \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) are produced?

Short Answer

Expert verified
(a) 0.800 moles of CO2 are produced when 0.400 mol of C6H12O6 reacts. (b) 14.66 grams of C6H12O6 are needed to form 7.50 g of C2H5OH. (c) 7.16 grams of CO2 are formed when 7.50 g of C2H5OH is produced.

Step by step solution

01

a) The moles of CO2 produced when 0.400 mol of C6H12O6 reacts

Using the stoichiometry from the balanced chemical equation, we can find the moles of CO2 produced when 0.400 mol of C6H12O6 reacts. According to the equation, one mole of C6H12O6 produces two moles of CO2: \[ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+2 \mathrm{CO}_{2}(g) \] So, to find the moles of CO2 produced, we will set up a conversion factor using the stoichiometry: \[ 0.400 \,\text{mol}\, C_{6} H_{12} O_{6} \times \frac{2\,\text{mol}\,CO_{2}}{1\,\text{mol}\,C_{6} H_{12} O_{6}} \] This simplifies to: \[ 0.400 \,\text{mol}\, C_{6} H_{12} O_{6} \times 2 = 0.800\,\text{mol}\,CO_{2} \] So, 0.800 moles of CO2 are produced when 0.400 mol of C6H12O6 reacts.
02

b) The grams of C6H12O6 needed to form 7.50 g of C2H5OH

First, we need to convert 7.50 g of C2H5OH to moles. To do this, we use the molar mass of C2H5OH, which is approximately 46.07 g/mol: \[ \frac{7.50\,\text{g}\,C_{2} H_{5} OH}{46.07\,\text{g/mol}} = 0.1628\,\text{mol}\,C_{2} H_{5} OH \] Now, using the stoichiometry from the balanced chemical equation, we can find out the moles of C6H12O6 needed to form 0.1628 mol of C2H5OH: \[ \frac{1\,\text{mol}\,C_{6} H_{12} O_{6}}{2\,\text{mol}\,C_{2} H_{5} OH} \times 0.1628\,\text{mol}\,C_{2} H_{5} OH \] This simplifies to: \[ \frac{1}{2} \times 0.1628\,\text{mol}\,C_{2} H_{5} OH = 0.0814\,\text{mol}\,C_{6} H_{12} O_{6} \] Finally, we convert 0.0814 mol of C6H12O6 to grams, using its molar mass, which is approximately 180.2 g/mol: \[ 0.0814\,\text{mol}\,C_{6} H_{12} O_{6} \times 180.2\,\text{g/mol} = 14.66\,\text{g}\,C_{6} H_{12} O_{6} \] So, 14.66 grams of C6H12O6 are needed to form 7.50 g of C2H5OH.
03

c) The grams of CO2 formed when 7.50 g of C2H5OH is produced

We have already calculated the moles of C2H5OH produced, which is 0.1628 mol. Using the stoichiometry from the balanced chemical equation, we can find out the moles of CO2 produced along with 0.1628 mol of C2H5OH: \[ \frac{2\,\text{mol}\,CO_{2}}{2\,\text{mol}\,C_{2} H_{5} OH} \times 0.1628\,\text{mol}\,C_{2} H_{5} OH \] This simplifies to: \[ 1 \times 0.1628\,\text{mol}\,C_{2} H_{5} OH = 0.1628\,\text{mol}\,CO_{2} \] Now, we convert 0.1628 mol of CO2 to grams, using its molar mass, which is approximately 44.01 g/mol: \[ 0.1628\,\text{mol}\,CO_{2} \times 44.01\,\text{g/mol} = 7.16\,\text{g}\,CO_{2} \] So, 7.16 grams of CO2 are formed when 7.50 g of C2H5OH is produced.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Mole Concept
The mole concept is a fundamental concept in chemistry that gives a bridge between the atomic world, visible only at microscopic levels, and the macroscopic world that we can actually measure. One mole represents a quantity of \(6.022 \times 10^{23}\) entities, be it atoms, molecules, or other basic units. This number is known as Avogadro's number.

To understand chemical reactions, the mole concept helps us in comparing products and reactants in a chemical equation. For instance, in the fermentation reaction of glucose \(C_{6} H_{12} O_{6} \rightarrow 2C_{2} H_{5} OH + 2CO_{2}\), every mole of glucose can produce two moles of ethyl alcohol (ethanol) and two moles of carbon dioxide.

Here’s how it works practically:
  • For every 1 mole of \(C_{6} H_{12} O_{6}\), 2 moles of \(CO_{2}\) are produced.
  • It enables us to use mass, the more tangible measurement, to quantify chemical reactions.
The use of the mole allows chemists to count particles by weighing them, simplifying the task of calculating how much product is formed from a certain amount of reactant.
Molar Mass Calculations
Molar mass is the mass of one mole of a given substance and is usually expressed in grams per mole (g/mol). This measurement acts as the bridge between the number of moles and the mass of a material.

Let's take ethanol (\(C_{2} H_{5} OH\)) as an example for molar mass calculation. To find its molar mass, you need to add up the atomic masses of all the atoms present in the molecule:
  • Carbon (C): 2 atoms \( \times \; 12.01 \; \text{g/mol} = 24.02 \; \text{g/mol}\)
  • Hydrogen (H): 6 atoms \( \times \; 1.01 \; \text{g/mol} = 6.06 \; \text{g/mol}\)
  • Oxygen (O): 1 atom (\( \times \; 16.00 \; \text{g/mol} = 16.00 \; \text{g/mol}\)
Total Molar Mass of \(C_{2} H_{5} OH\) = 24.02 g/mol + 6.06 g/mol + 16.00 g/mol = 46.08 g/mol.

This information allows us to convert grams to moles and vice versa. For example, in the given reaction scenario, when dealing with the grams of ethanol, you can convert this to moles: if 7.50 g of \(C_{2} H_{5} OH\) is given, convert it using its molar mass to find moles.
Chemical Equations
Chemical equations are symbolic representations of chemical reactions. They show the reactants and products involved in the reaction and their stoichiometric relationships. Balanced chemical equations maintain the principle of conservation of mass, ensuring that the number of atoms for each element is the same on both sides of the equation.

In the case of the fermentation of glucose: \(C_{6} H_{12} O_{6} (aq) \rightarrow 2 C_{2} H_{5} OH (aq) + 2 CO_{2} (g)\), the equation reflects the stochiometric balance:
  • One mole of glucose decomposes into two moles of ethyl alcohol and two moles of carbon dioxide.
Balancing chemical equations involves making sure the number of atoms for every element is the same in reactants and products. This is important for correct stoichiometric calculations, allowing you to convert between moles, mass, and volume using balanced relations.

Balancing chemical equations is crucial because it enables chemists to follow the law of conservation of mass and accurately describe the flow of reactants to form products in a chemical reaction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write balanced chemical equations to correspond to each of the following descriptions: (a) When sulfur trioxide gas reacts with water, a solution of sulfuric acid forms. (b) Boron sulfide, \(\mathrm{B}_{2} \mathrm{~S}_{3}(\mathrm{~s})\), reacts violently with water to form dissolved boric acid, \(\mathrm{H}_{3} \mathrm{BO}_{3}\), and hydrogen sulfide gas. (c) When an aqueous solution of lead(II) nitrate is mixed with an aqueous solution of sodium iodide, an aqueous solution of sodium nitrate and a yellow solid, lead iodide, are formed. (d) When solid mercury(II) nitrate is heated, it decomposes to form solid mercury(II) oxide, gaseous nitrogen dioxide, and oxygen. (e) Copper metal reacts with hot concentrated sulfuric acid solution to form aqueous copper(II) sulfate, sulfur dioxide gas, and water.

Several brands of antacids use \(\mathrm{Al}(\mathrm{OH})_{3}\) to react with stomach acid, which contains primarily HCl: $$ \mathrm{Al}(\mathrm{OH})_{3}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{AlCl}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) $$ (a) Balance this equation. (b) Calculate the number of grams of \(\mathrm{HCl}\) that can react with \(0.500 \mathrm{~g}\) of \(\mathrm{Al}(\mathrm{OH})_{3}\). (c) Calculate the number of grams of \(\mathrm{AlCl}_{3}\) and the number of grams of \(\mathrm{H}_{2} \mathrm{O}\) formed when \(0.500 \mathrm{~g}\) of \(\mathrm{Al}(\mathrm{OH})_{3}\) reacts. (d) Show that your calculations in parts (b) and (c) are consistent with the law of conservation of mass.

If Avogadro's number of pennies is divided equally among the 300 million men, women, and children in the United States, how many dollars would each receive? How does this compare with the gross domestic product of the United States, which was \(\$ 13.5\) trillion in 2006 ? (The GDP is the total market value of the nation's goods and services.)

(a) Combustion analysis of toluene, a common organic solvent, gives \(5.86 \mathrm{mg}\) of \(\mathrm{CO}_{2}\) and \(1.37 \mathrm{mg}\) of \(\mathrm{H}_{2} \mathrm{O}\). If the compound contains only carbon and hydrogen, what is its empirical formula? (b) Menthol, the substance we can smell in mentholated cough drops, is composed of \(\mathrm{C}, \mathrm{H}\), and \(\mathrm{O}\). A \(0.1005-\mathrm{g}\) sample of menthol is combusted, producing \(0.2829 \mathrm{~g}\) of \(\mathrm{CO}_{2}\) and \(0.1159 \mathrm{~g}\) of \(\mathrm{H}_{2} \mathrm{O}\). What is the empirical formula for menthol? If menthol has a molar mass of \(156 \mathrm{~g} / \mathrm{mol}\), what is its molecular formula?

Hydrofluoric acid, \(\mathrm{HF}(a q)\), cannot be stored in glass bottles because compounds called silicates in the glass are attacked by the \(\mathrm{HF}(a q) .\) Sodium silicate \(\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)\), for example, reacts as follows: $$ \mathrm{Na}_{2} \mathrm{SiO}_{3}(s)+8 \mathrm{HF}(a q) \longrightarrow $$ (a) How many moles of \(\mathrm{HF}\) are needed to react with \(0.300 \mathrm{~mol}\) of \(\mathrm{Na}_{2} \mathrm{SiO}_{3} ?\) (b) How many grams of NaF form when \(0.500 \mathrm{~mol}\) of HF reacts with excess \(\mathrm{Na}_{2} \mathrm{SiO}_{3} ?\) (c) How many grams of \(\mathrm{Na}_{2} \mathrm{SiO}_{3}\) can react with \(0.800 \mathrm{~g}\) of \(\mathrm{HF}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free