Chapter 3: Problem 55
Why is it essential to use balanced chemical equations when determining the quantity of a product formed from a given quantity of a reactant?
Chapter 3: Problem 55
Why is it essential to use balanced chemical equations when determining the quantity of a product formed from a given quantity of a reactant?
All the tools & learning materials you need for study success - in one app.
Get started for freeA method used by the U.S. Environmental Protection Agency (EPA) for determining the concentration of ozone in air is to pass the air sample through a "bubbler" containing sodium iodide, which removes the ozone according to the following equation: $$ \mathrm{O}_{3}(g)+2 \mathrm{Nal}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow_{2}(g)+\mathrm{I}_{2}(s)+2 \mathrm{NaOH}(a q) $$ (a) How many moles of sodium iodide are needed to remove \(5.95 \times 10^{-6} \mathrm{~mol}\) of \(\mathrm{O}_{3} ?\) (b) How many grams of sodium iodide are needed to remove \(1.3 \mathrm{mg}\) of \(\mathrm{O}_{3} ?\)
Write a balanced chemical equation for the reaction that occurs when (a) aluminum metal undergoes a combination reaction with \(\mathrm{O}_{2}(g) ;\) (b) copper(II) hydroxide decomposes into copper(II) oxide and water when heated; (c) heptane, \(\mathrm{C}_{7} \mathrm{H}_{16}(l)\), burns in air; (d) the gasoline additive MTBE (methyl tert-butyl ether), \(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(l)\), burns in air.
(a) Combustion analysis of toluene, a common organic solvent, gives \(5.86 \mathrm{mg}\) of \(\mathrm{CO}_{2}\) and \(1.37 \mathrm{mg}\) of \(\mathrm{H}_{2} \mathrm{O}\). If the compound contains only carbon and hydrogen, what is its empirical formula? (b) Menthol, the substance we can smell in mentholated cough drops, is composed of \(\mathrm{C}, \mathrm{H}\), and \(\mathrm{O}\). A \(0.1005-\mathrm{g}\) sample of menthol is combusted, producing \(0.2829 \mathrm{~g}\) of \(\mathrm{CO}_{2}\) and \(0.1159 \mathrm{~g}\) of \(\mathrm{H}_{2} \mathrm{O}\). What is the empirical formula for menthol? If menthol has a molar mass of \(156 \mathrm{~g} / \mathrm{mol}\), what is its molecular formula?
A particular coal contains \(2.5 \%\) sulfur by mass. When this coal is burned at a power plant, the sulfur is converted into sulfur dioxide gas, which is a pollutant. To reduce sulfur dioxide emissions, calcium oxide (lime) is used. The sulfur dioxide reacts with calcium oxide to form solid calcium sulfite. (a) Write the balanced chemical equation for the reaction. (b) If the coal is burned in a power plant that uses 2000 tons of coal per day, what mass of calcium oxide is required daily to eliminate the sulfur dioxide? (c) How many grams of calcium sulfite are produced daily by this power plant?
One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of \(\mathrm{NH}_{3}\) to \(\mathrm{NO}\) : $$ 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) $$ In a certain experiment, \(1.50 \mathrm{~g}\) of \(\mathrm{NH}_{3}\) reacts with \(2.75 \mathrm{~g}\) of \(\mathrm{O}_{2}\) (a) Which is the limiting reactant? (b) How many grams of \(\mathrm{NO}\) and of \(\mathrm{H}_{2} \mathrm{O}\) form? (c) How many grams of the excess reactant remain after the limiting reactant is completely consumed? (d) Show that your calculations in parts (b) and (c) are consistent with the law of conservation of mass.
What do you think about this solution?
We value your feedback to improve our textbook solutions.