Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is Avogadro's number, and how is it related to the mole? (b) What is the relationship between the formula weight of a substance and its molar mass?

Short Answer

Expert verified
(a) Avogadro's number (\(N_A\)) is approximately \(6.022 \times 10^{23}\) particles per mole and relates the number of particles in a sample to the mass of the sample using the mole concept. (b) The formula weight of a substance, in atomic mass units (amu), is equal to its molar mass, expressed in grams per mole (g/mol). The relationship between them is: Formula Weight (amu) = Molar Mass (g/mol)

Step by step solution

01

Define Avogadro's Number

Avogadro's number, denoted as \(N_A\), is the number of representative particles (such as atoms, ions, or molecules) in one mole of a substance. It is a fixed value, approximately equal to \( 6.022 \times 10^{23} \) particles per mole.
02

Connect Avogadro's Number to the Mole

The mole is a unit for expressing the amount of a substance. It relates the number of particles in a sample to the mass of the sample. By knowing the molecular weight of a substance, we can determine the number of moles and hence the number of particles in a given mass of the substance using Avogadro's number.
03

Define Formula Weight and Molar Mass

The formula weight (also known as molecular weight) of a substance is the sum of the atomic weights of all the atoms in a chemical formula. It is represented in atomic mass units (amu). Molar mass is the mass of one mole of a substance, expressed in grams per mole (g/mol). Since 1 amu is almost equal to 1 g/mol, you can consider the formula weight of a substance to be numerically equal to its molar mass.
04

Relate Formula Weight to Molar Mass

The relationship between the formula weight of a substance and its molar mass lies in the fact that they have the same numerical value. The formula weight (in amu) represents the mass of one particle of a substance, whereas the molar mass (in g/mol) represents the mass of one mole of a substance, containing Avogadro's number of particles. Thus, the formula weight of a substance is equal to the molar mass, or: Formula Weight (amu) = Molar Mass (g/mol)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The koala dines exclusively on eucalyptus leaves. Its digestive system detoxifies the eucalyptus oil, a poison to other animals. The chief constituent in eucalyptus oil is a substance called eucalyptol, which contains \(77.87 \% \mathrm{C}\), \(11.76 \% \mathrm{H}\), and the remainder \(\mathrm{O}\). (a) What is the empirical formula for this substance? (b) A mass spectrum of eucalyptol shows a peak at about 154 amu. What is the molecular formula of the substance?

The fermentation of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) produces ethyl alcohol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) and \(\mathrm{CO}_{2}\) : $$ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+2 \mathrm{CO}_{2}(g) $$ (a) How many moles of \(\mathrm{CO}_{2}\) are produced when \(0.400\) mol of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) reacts in this fashion? (b) How many grams of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) are needed to form \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) ? (c) How many grams of \(\mathrm{CO}_{2}\) form when \(7.50 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) are produced?

Balance the following equations: (a) \(\mathrm{Li}(s)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{Li}_{3} \mathrm{~N}(s)\) (b) \(\mathrm{La}_{2} \mathrm{O}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{La}(\mathrm{OH})_{3}(a q)\) (c) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) (d) \(\mathrm{Ca}_{3} \mathrm{P}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{PH}_{3}(g)\) (e) \(\mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \longrightarrow\) \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l)\) (f) \(\mathrm{AgNO}_{3}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \longrightarrow\) \(\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})+\mathrm{NaNO}_{3}(a q)\) (g) \(\mathrm{CH}_{3} \mathrm{NH}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow\) \(\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{N}_{2}(g)\)

The molecular formula of aspartame, the artificial sweetener marketed as NutraSweet \(^{0}\), is \(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\) (a) What is the molar mass of aspartame? (b) How many moles of aspartame are present in \(1.00 \mathrm{mg}\) of aspartame? (c) How many molecules of aspartame are present in \(1.00 \mathrm{mg}\) of aspartame? (d) How many hydrogen atoms are present in \(1.00 \mathrm{mg}\) of aspartame?

Write a balanced chemical equation for the reaction that occurs when (a) \(\mathrm{Mg}(\mathrm{s})\) reacts with \(\mathrm{Cl}_{2}(g) ;\) (b) barium carbonate decomposes into barium oxide and carbon dioxide gas when heated; (c) the hydrocarbon styrene, \(\mathrm{C}_{8} \mathrm{H}_{8}(l)\), is combusted in air; (d) dimethylether, \(\mathrm{CH}_{3} \mathrm{OCH}_{3}(g)\), is combusted in air.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free