Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is the difference between Werner's concepts of primary valence and secondary valence? What terms do we now use for these concepts? (b) Why can the \(\mathrm{NH}_{3}\) molecule serve as a ligand but the \(\mathrm{BH}_{3}\) molecule cannot?

Short Answer

Expert verified
(a) Werner's primary valence corresponds to the ionic bonds between the central metal ion and negative counter-ions, while secondary valence refers to the coordinate covalent bonds between the central metal ion and ligands. These are now called 'oxidation number' and 'coordination number.' (b) NH3 can serve as a ligand because its nitrogen atom has a lone pair of electrons that it can donate to form a coordinate covalent bond with the central metal ion. However, BH3 lacks a lone pair of electrons on its boron atom, rendering it unable to form coordinate covalent bonds and act as a ligand.

Step by step solution

01

Part (a): Primary and Secondary Valence Concepts

Werner's concepts of primary valence and secondary valence were introduced to explain the bonding and structure of coordination compounds. Primary valence refers to the ionic bonds formed between the central metal ion and negative counter-ions, while secondary valence refers to the coordinate covalent bonds formed between the central metal ion and ligands. Nowadays, the concepts of primary valence and secondary valence are better represented by the terms 'oxidation number' and 'coordination number,' respectively.
02

Part (b): NH3 and BH3 as Ligands

To act as a ligand, a molecule must have a lone pair of electrons that it can donate to form a coordinate covalent bond with the central metal ion. In the case of NH3 (ammonia), the nitrogen atom has a lone pair of electrons that it can donate, making it an effective ligand. The chemical formula for ammonia can be written as \(\mathrm{N}(\mathrm{H}_{3})\), clearly showing the lone pair of electrons on the nitrogen. On the other hand, the BH3 (borane) molecule has a boron atom that lacks a lone pair of electrons. Instead, the boron atom forms bonds with three hydrogen atoms, giving it a full valence shell but no lone pair of electrons that could act as a donor. Thus, BH3 cannot form coordinate covalent bonds with a central metal ion, and it is not a ligand.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Indicate the coordination number of the metal and the oxidation number of the metal in each of the following complexes: (a) \(\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]\) (b) \(\mathrm{Na}_{2}\left[\mathrm{CdBr}_{4}\right]\) (c) \(\left[\mathrm{Pt}(\mathrm{en})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}\) (d) \(\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{+}\) (e) \(\mathrm{NH}_{4}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{NCS})_{4}\right]\) (f) \(\left[\mathrm{Cu}(\mathrm{bipy})_{2} \mathrm{I}\right] \mathrm{I}\)

The ion \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}\) has one unpaired electron, whereas \(\left[\mathrm{Fe}(\mathrm{NCS})_{6}\right]^{3-}\) has five unpaired electrons. From these results, what can you conclude about whether each complex is high spin or low spin? What can you say about the placement of \(\mathrm{NCS}^{-}\) in the spectrochemical series?

The molecule methylamine \(\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)\) can act as a monodentate ligand. The following are equilibrium reactions and the thermochemical data at \(298 \mathrm{~K}\) for reactions of methylamine and en with \(\mathrm{Cd}^{2+}(a q)\) : \(\mathrm{Cd}^{2+}(a q)+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(a q) \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(a q)\) \(\Delta H^{\circ}=-57.3 \mathrm{~kJ} ; \quad \Delta S^{\circ}=-67.3 \mathrm{~J} / \mathrm{K} ; \quad \Delta G^{\circ}=-37.2 \mathrm{~kJ}\) $$ \mathrm{Cd}^{2+}(a q)+2 \mathrm{en}(a q) \rightleftharpoons\left[\mathrm{Cd}(\mathrm{en})_{2}\right]^{2+}(a q) $$ \(\Delta H^{\circ}=-56.5 \mathrm{~kJ} ; \quad \Delta S^{\circ}=+14.1 \mathrm{~J} / \mathrm{K} ; \quad \Delta G^{\circ}=-60.7 \mathrm{~kJ}\) (a) Calculate \(\Delta G^{\circ}\) and the equilibrium constant \(K\) for the following ligand exchange reaction: \(\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(a q)+2 \mathrm{en}(a q) \rightleftharpoons\) $$ \left[\mathrm{Cd}(\mathrm{en})_{2}\right]^{2+}(a q)+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(a q) $$ (b) Based on the value of \(K\) in part (a), what would you conclude about this reaction? What concept is demonstrated? (c) Determine the magnitudes of the enthalpic \(\left(\Delta H^{\circ}\right)\) and the entropic \(\left(-T \Delta S^{\circ}\right)\) contributions to \(\Delta G^{\circ}\) for the ligand exchange reaction. Explain the relative magnitudes. (d) Based on information in this exercise and in the "A Closer Look" box on the chelate effect, predict the sign of \(\Delta H^{\circ}\) for the following hypothetical reaction: \(\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons\) $$ \left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(a q)+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(a q) $$

Sketch the structure of the complex in each of the following compounds: (a) \(c i s-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\) (b) \(\mathrm{Na}_{2}\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{5}\right]\) (c) trans- \(\mathrm{NH}_{4}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\) (d) cis-[Ru(en) \(\left._{2} \mathrm{Cl}_{2}\right]\)

Indicate the likely coordination number of the metal in each of the following complexes: (a) \(\left[\mathrm{Rh}(\mathrm{bipy})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}\) (b) \(\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]\) (c) \(\left[\mathrm{Cr}(\mathrm{o}-\mathrm{phen})_{3}\right]\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}\) (d) \(\mathrm{Na}_{2}[\mathrm{Co}(\mathrm{EDTA}) \mathrm{Br}]\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free