Chapter 22: Problem 61
Write complete balanced half-reactions for (a) oxidation of nitrous acid to nitrate ion in acidic solution, (b) oxidation of \(\mathrm{N}_{2}\) to \(\mathrm{N}_{2} \mathrm{O}\) in acidic solution.
Chapter 22: Problem 61
Write complete balanced half-reactions for (a) oxidation of nitrous acid to nitrate ion in acidic solution, (b) oxidation of \(\mathrm{N}_{2}\) to \(\mathrm{N}_{2} \mathrm{O}\) in acidic solution.
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain the following observations: (a) for a given oxidation state, the acid strength of the oxyacid in aqueous solution decreases in the order chlorine \(>\) bromine \(>\) iodine. (b) Hydrofluoric acid cannot be stored in glass bottles. (c) HI cannot be prepared by treating NaI with sulfuric acid. (d) The interhalogen \(\mathrm{ICl}_{3}\) is known, but \(\mathrm{BrCl}_{3}\) is not.
Silicon has a limited capacity to form linear, \(\mathrm{Si}-\mathrm{Si}\) bonded structures similar to those formed by carbon. (a) Predict the molecular formula of a hydride of silicon that contains a chain of three silicon atoms. (b) Write a balanced equation for the reaction between oxygen and the compound you predicted in part (a).
In aqueous solution, hydrogen sulfide reduces (a) \(\mathrm{Fe}^{3+}\) to \(\mathrm{Fe}^{2+}\), (b) \(\mathrm{Br}_{2}\) to \(\mathrm{Br}^{-}\), (c) \(\mathrm{MnO}_{4}^{-}\) to \(\mathrm{Mn}^{2+}\), (d) \(\mathrm{HNO}_{3}\) to \(\mathrm{NO}_{2}\). In all cases, under appropriate conditions, the product is elemental sulfur. Write a balanced net ionic equation for each reaction.
Why does xenon form stable compounds with fluorine, whereas argon does not?
Give the chemical formula for (a) hydrocyanic acid, (b) nickel tetracarbonyl, (c) barium bicarbonate, (d) calcium acetylide.
What do you think about this solution?
We value your feedback to improve our textbook solutions.