Chapter 20: Problem 9
How does a zinc coating on iron protect the iron from unwanted oxidation? [Section 20.8]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 20: Problem 9
How does a zinc coating on iron protect the iron from unwanted oxidation? [Section 20.8]
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following quotation is taken from an article dealing with corrosion of electronic materials: "Sulfur dioxide, its acidic oxidation products, and moisture are well established as the principal causes of outdoor corrosion of many metals." Using Ni as an example, explain why the factors cited affect the rate of corrosion. Write chemical equations to illustrate your points. (Note: \(\mathrm{NiO}(s)\) is soluble in acidic solution.)
A voltaic cell similar to that shown in Figure \(20.5\) is constructed. One electrode compartment consists of an aluminum strip placed in a solution of \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\), and the other has a nickel strip placed in a solution of \(\mathrm{NiSO}_{4}\). The overall cell reaction is $$ 2 \mathrm{Al}(s)+3 \mathrm{Ni}^{2+}(a q) \longrightarrow 2 \mathrm{Al}^{3+}(a q)+3 \mathrm{Ni}(s) $$ (a) What is being oxidized, and what is being reduced? (b) Write the half-reactions that occur in the two electrode compartments. (c) Which electrode is the anode, and which is the cathode? (d) Indicate the signs of the electrodes. (e) Do electrons flow from the aluminum electrode to the nickel electrode, or from the nickel to the aluminum? (f) In which directions do the cations and anions migrate through the solution? Assume the Al is not coated with its oxide.
A voltaic cell utilizes the following reaction: $$ \mathrm{Al}(s)+3 \mathrm{Ag}^{+}(a q)-\infty \mathrm{Al}^{3+}(a q)+3 \mathrm{Ag}(s) $$ What is the effect on the cell emf of each of the following changes? (a) Water is added to the anode compartment, diluting the solution. (b) The size of the aluminum electrode is increased. (c) A solution of \(\mathrm{AgNO}_{3}\) is added to the cathode compartment, increasing the quantity of \(\mathrm{Ag}^{+}\) but not changing its concentration. (d) \(\mathrm{HCl}\) is added to the \(\mathrm{AgNO}_{3}\) solution, precipitating some of the \(\mathrm{Ag}^{+}\) as \(\mathrm{AgCl}\)
(a) What does the term electromotive force mean? (b) What is the definition of the volt? (c) What does the term cell potential mean?
Some years ago a unique proposal was made to raise the Titanic. The plan involved placing pontoons within the ship using a surface-controlled submarine-type vessel. The pontoons would contain cathodes and would be filled with hydrogen gas formed by the electrolysis of water. It has been estimated that it would require about \(7 \times 10^{8} \mathrm{~mol}\) of \(\mathrm{H}_{2}\) to provide the buoyancy to lift the ship (J. Chem. Educ., Vol. \(50,1973,61\) ). (a) How many coulombs of electrical charge would be required? (b) What is the minimum voltage required to generate \(\mathrm{H}_{2}\) and \(\mathrm{O}_{2}\) if the pressure on the gases at the depth of the wreckage ( \(2 \mathrm{mi}\) ) is \(300 \mathrm{~atm} ?\) (c) What is the minimum electrical energy required to raise the Titanic by electrolysis? (d) What is the minimum cost of the electrical energy required to generate the necessary \(\mathrm{H}_{2}\) if the electricity costs 85 cents per kilowatt-hour to generate at the site?
What do you think about this solution?
We value your feedback to improve our textbook solutions.