Chapter 20: Problem 82
An iron object is plated with a coating of cobalt to protect against corrosion. Does the cobalt protect iron by cathodic protection? Explain.
Chapter 20: Problem 82
An iron object is plated with a coating of cobalt to protect against corrosion. Does the cobalt protect iron by cathodic protection? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Assuming standard conditions, arrange the following in order of increasing strength as oxidizing agents in acidic solution: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{Cl}_{2}, \mathrm{O}_{2} .\) (b) Arrange the following in order of increasing strength as reducing agents in acidic solution: \(\mathrm{Zn}, \mathrm{I}^{-}, \mathrm{Sn}^{2+}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Al}\).
A voltaic cell is constructed with two silver-silver chloride electrodes, each of which is based on the following half-reaction: $$ \mathrm{AgCl}(s)+\mathrm{e}^{-\longrightarrow} \mathrm{Ag}(s)+\mathrm{Cl}^{-}(a q) $$ The two cell compartments have \(\left[\mathrm{Cl}^{-}\right]=0.0150 \mathrm{M}\) and \(\left[\mathrm{Cl}^{-}\right]=2.55 M\), respectively. (a) Which electrode is the cathode of the cell? (b) What is the standard emf of the cell? (c) What is the cell emf for the concentrations given? (d) For each electrode, predict whether [Cl \(^{-}\) ] will increase, decrease, or stay the same as the cell operates.
(a) What is electrolysis? (b) Are electrolysis reactions thermodynamically spontaneous? Explain. (c) What process occurs at the anode in the electrolysis of molten \(\mathrm{NaCl}\) ?
A plumber's handbook states that you should not connect a brass pipe directly to a galvanized steel pipe because electrochemical reactions between the two metals will cause corrosion. The handbook recommends you use, instead, an insulating fitting to connect them. Brass is a mixture of copper and zinc. What spontaneous redox reaction(s) might cause the corrosion? Justify your answer with standard emf calculations.
Using standard reduction potentials (Appendix E), calculate the standard emf for each of the following reactions: (a) \(\mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q) \longrightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{I}_{2}(s)\) (b) \(\mathrm{Ni}(s)+2 \mathrm{Ce}^{4+}(a q) \longrightarrow \mathrm{Ni}^{2+}(a q)+2 \mathrm{Ce}^{3+}(a q)\) (c) \(\mathrm{Fe}(s)+2 \mathrm{Fe}^{3+}(a q) \longrightarrow 3 \mathrm{Fe}^{2+}(a q)\) (d) \(2 \mathrm{Al}^{3+}(a q)+3 \mathrm{Ca}(s) \longrightarrow 2 \mathrm{Al}(s)+3 \mathrm{Ca}^{2+}(a q)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.