Chapter 20: Problem 105
If you were going to apply a small potential to a steel ship resting in the water as a means of inhibiting corrosion, would you apply a negative or a positive charge? Explain.
Chapter 20: Problem 105
If you were going to apply a small potential to a steel ship resting in the water as a means of inhibiting corrosion, would you apply a negative or a positive charge? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeA plumber's handbook states that you should not connect a brass pipe directly to a galvanized steel pipe because electrochemical reactions between the two metals will cause corrosion. The handbook recommends you use, instead, an insulating fitting to connect them. Brass is a mixture of copper and zinc. What spontaneous redox reaction(s) might cause the corrosion? Justify your answer with standard emf calculations.
(a) Assuming standard conditions, arrange the following in order of increasing strength as oxidizing agents in acidic solution: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{Cl}_{2}, \mathrm{O}_{2} .\) (b) Arrange the following in order of increasing strength as reducing agents in acidic solution: \(\mathrm{Zn}, \mathrm{I}^{-}, \mathrm{Sn}^{2+}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Al}\).
Indicate whether each of the following statements is true or false: (a) If something is oxidized, it is formally losing electrons. (b) For the reaction \(\mathrm{Fe}^{3+}(a q)+\mathrm{Co}^{2+}(a q)-\cdots\) \(\mathrm{Fe}^{2+}(a q)+\mathrm{Co}^{3+}(a q), \mathrm{Fe}^{3+}(a q)\) is the reducing agent and \(\mathrm{Co}^{2+}(a q)\) is the oxidizing agent. (c) If there are no changes in the oxidation state of the reactants or products of a particular reaction, that reaction is not a redox reaction.
(a) What is meant by the term oxidation? (b) On which side of an oxidation half-reaction do the electrons appear? (c) What is meant by the term oxidant? (d) What is meant by the term oxidizing agent?
Indicate whether the following balanced equations involve oxidation-reduction. If they do, identify the elements that undergo changes in oxidation number. (a) \(\mathrm{PBr}_{3}(l)+3 \mathrm{H}_{2} \mathrm{O}(l)-\cdots \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}(a q)+3 \mathrm{HBr}(a q)\) (b) \(\operatorname{NaI}(a q)+3 \mathrm{HOCl}(a q)-\cdots+\mathrm{NaIO}_{3}(a q)+3 \mathrm{HCl}(a q)\) (c) \(3 \mathrm{SO}_{2}(g)+2 \mathrm{HNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)-\cdots\) \(3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NO}(g)\) (d) \(2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaBr}(s) \rightarrow\) \(\mathrm{Br}_{2}(l)+\mathrm{SO}_{2}(g)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.