Chapter 19: Problem 92
Aceticacid can be manufactured by combining methanol with carbon monoxide, an example of a carbonylation reaction: $$ \mathrm{CH}_{3} \mathrm{OH}(l)+\mathrm{CO}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}(l) $$ (a) Calculate the equilibrium constant for the reaction at \(25^{\circ} \mathrm{C}\). (b) Industrially, this reaction is run at temperatures above \(25^{\circ} \mathrm{C}\). Will an increase in temperature produce an increase or decrease in the mole fraction of acetic acid at equilibrium? Why are elevated temperatures used? (c) At what temperature will this reaction have an equilibrium constant equal to \(1 ?\) (You may assume that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are temperature independent, and you may ignore any phase changes that might occur.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.