Chapter 19: Problem 35
(a) State the third law of thermodynamics. (b) Distinguish between translational motion, vibrational motion, and rotational motion of a molecule. (c) Illustrate these three kinds of motion with sketches for the HCl molecule.
Chapter 19: Problem 35
(a) State the third law of thermodynamics. (b) Distinguish between translational motion, vibrational motion, and rotational motion of a molecule. (c) Illustrate these three kinds of motion with sketches for the HCl molecule.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen most elastomeric polymers (e.g., a rubber band) are stretched, the molecules become more ordered, as illustrated here: Suppose you stretch a rubber band. (a) Do you expect the entropy of the system to increase or decrease? (b) If the rubber band were stretched isothermally, would heat need to be absorbed or emitted to maintain constant temperature?
(a) For a process that occurs at constant temperature, express the change in Gibbs free energy in terms of changes in the enthalpy and entropy of the system. (b) For a certain process that occurs at constant \(T\) and \(P\), the value of \(\Delta G\) is positive. What can you conclude? (c) What is the relationship between \(\Delta G\) for a process and the rate at which it occurs?
The standard entropies at \(298 \mathrm{~K}\) for certain of the group \(4 \mathrm{~A}\) elements are as follows: \(\mathrm{C}(s\), diamond \()=2.43 \mathrm{~J} / \mathrm{mol}-\mathrm{K} ; \quad \mathrm{Si}(s)=18.81 \mathrm{~J} / \mathrm{mol}-\mathrm{K} ;\) \(\mathrm{Ge}(s)=31.09 \mathrm{~J} / \mathrm{mol}-\mathrm{K} ; \quad\) and \(\quad \mathrm{Sn}(s)=51.18 \mathrm{~J} / \mathrm{mol}-\mathrm{K}\) All but Sn have the diamond structure. How do you account for the trend in the \(S^{\circ}\) values?
For a particular reaction, \(\Delta H=-32 \mathrm{~kJ}\) and \(\Delta S=\) \(-98 \mathrm{~J} / \mathrm{K}\). Assume that \(\Delta H\) and \(\Delta S\) do not vary with temperature. (a) At what temperature will the reaction have \(\Delta G=0 ?\) (b) If \(T\) is increased from that in part (a), will the reaction be spontaneous or nonspontaneous?
For the majority of the compounds listed in Appendix C, the value of \(\Delta G_{f}^{\circ}\) is more positive (or less negative) than the value of \(\Delta H_{f}^{\circ}\). (a) Explain this observation, using \(\mathrm{NH}_{3}(g), \mathrm{CCl}_{4}(l)\), and \(\mathrm{KNO}_{3}(s)\) as examples. (b) \(\mathrm{An}\) exception to this observation is \(\mathrm{CO}(g)\). Explain the trend in the \(\Delta H_{f}^{\circ}\) and \(\Delta G_{f}^{\circ}\) values for this molecule.
What do you think about this solution?
We value your feedback to improve our textbook solutions.