Chapter 19: Problem 29
How would each of the following changes affect the number of microstates available to a system: (a) increase in temperature, (b) decrease in volume, (c) change of state from liquid to gas?
Chapter 19: Problem 29
How would each of the following changes affect the number of microstates available to a system: (a) increase in temperature, (b) decrease in volume, (c) change of state from liquid to gas?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe crystalline hydrate \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(s)\) loses water when placed in a large, closed, dry vessel: \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}(s)+4 \mathrm{H}_{2} \mathrm{O}(g)\) This process occurs even though it is endothermic; that is, \(\Delta H\) is positive. Is this process an exception to Bertholet's generalization? Explain.
Which of the following processes are spontaneous: (a) the melting of ice cubes at \(10^{\circ} \mathrm{C}\) and 1 atm pressure; (b) separating a mixture of \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\) into two separate samples, one that is pure \(\mathrm{N}_{2}\) and one that is pure \(\mathrm{O}_{2}\); (c) alignment of iron filings in a magnetic field; (d) the reaction of sodium metal with chlorine gas to form sodium chloride; (e) the dissolution of \(\mathrm{HCl}(g)\) in water to form concentrated hydrochloric acid?
Consider what happens when a sample of the explosive TNT (Section 8.8: "Chemistry Put to Work: Explosives and Alfred Nobel") is detonated. (a) Is the detonation a spontaneous process? (b) What is the sign of \(q\) for this process? (c) Can you determine whether \(w\) is positive, negative, or zero for the process? Explain. (d) Can you determine the sign of \(\Delta E\) for the process? Explain.
Sulfur dioxide reacts with strontium oxide as follows: $$ \mathrm{SO}_{2}(g)+\mathrm{SrO}(s) \longrightarrow \operatorname{SrSO}_{3}(s) $$ (a) Without using thermochemical data, predict whether \(\Delta G^{\circ}\) for this reaction is more negative or less negative than \(\Delta H^{\circ} .\) (b) If you had only standard enthalpy data for this reaction, how would you go about making a rough estimate of the value of \(\Delta G^{\circ}\) at \(298 \mathrm{~K}\), using data from Appendix \(\mathrm{C}\) on other substances?
Calculate \(\Delta S^{\circ}\) values for the following reactions by using tabulated \(S^{\circ}\) values from Appendix \(C\). In each case explain the sign of \(\Delta S^{\circ}\). (a) \(\mathrm{N}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) (b) \(\mathrm{K}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{KO}_{2}(s)\) (c) \(\mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(g) \longrightarrow \mathrm{MgCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)\) (d) \(\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.