Chapter 18: Problem 18
Why is the photodissociation of \(\mathrm{N}_{2}\) in the atmosphere relatively unimportant compared with the photodissociation of \(\mathrm{O}_{2} ?\)
Chapter 18: Problem 18
Why is the photodissociation of \(\mathrm{N}_{2}\) in the atmosphere relatively unimportant compared with the photodissociation of \(\mathrm{O}_{2} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe degradation of \(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}\) (an \(\left.\mathrm{HFC}\right)\) by OH radicals in the troposphere is first order in each reactant and has a rate constant of \(k=1.6 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) at \(4{ }^{\circ} \mathrm{C}\). If the tropospheric concentrations of \(\mathrm{OH}\) and \(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}\) are \(8.1 \times 10^{5}\) and \(6.3 \times 10^{8}\) molecules \(\mathrm{cm}^{-3}\), respectively, what is the rate of reaction at this temperature in \(M /\) s?
Would you expect the substance \(\mathrm{CFBr}_{3}\) to be effective in depleting the ozone layer, assuming that it is present in the stratosphere? Explain.
Nitrogen dioxide \(\left(\mathrm{NO}_{2}\right)\) is the only important gaseous species in the lower atmosphere that absorbs visible light. (a) Write the Lewis structure(s) for \(\mathrm{NO}_{2}\). (b) How does this structure account for the fact that \(\mathrm{NO}_{2}\) dimerizes to form \(\mathrm{N}_{2} \mathrm{O}_{4} ?\) Based on what you can find about this dimerization reaction in the text, would you expect to find the \(\mathrm{NO}_{2}\) that forms in an urban environment to be in the form of dimer? Explain. (c) What would you expect as products, if any, for the reaction of \(\mathrm{NO}_{2}\) with CO? (d) Would you expect \(\mathrm{NO}_{2}\) generated in an urban environment to migrate to the stratosphere? Explain.
A first-stage recovery of magnesium from seawater is precipitation of \(\mathrm{Mg}(\mathrm{OH})_{2}\) with \(\mathrm{CaO}\) : $$\mathrm{Mg}^{2+}(a q)+\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(s)+\mathrm{Ca}^{2+}(a q)$$ What mass of \(\mathrm{CaO}\), in grams, is needed to precipitate \(1000 \mathrm{lb}\) of \(\mathrm{Mg}(\mathrm{OH})_{2} ?\)
In \(\mathrm{CF}_{3} \mathrm{Cl}\) the \(\mathrm{C}-\mathrm{Cl}\) bond- dissociation energy is \(339 \mathrm{~kJ} / \mathrm{mol} .\) In \(\mathrm{CCl}_{4}\) the \(\mathrm{C}-\mathrm{Cl}\) bond-dissociation energy is \(293 \mathrm{~kJ} / \mathrm{mol}\). What is the range of wavelengths of photons that can cause \(\mathrm{C}-\mathrm{Cl}\) bond rupture in one molecule but not in the other?
What do you think about this solution?
We value your feedback to improve our textbook solutions.