Chapter 17: Problem 94
Calculate the solubility of \(\mathrm{Mg}(\mathrm{OH})_{2}\) in \(0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}\).
Chapter 17: Problem 94
Calculate the solubility of \(\mathrm{Mg}(\mathrm{OH})_{2}\) in \(0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeExcess \(\mathrm{Ca}(\mathrm{OH})_{2}\) is shaken with water to produce a saturated solution. The solution is filtered, and a \(50.00-\mathrm{mL}\) sample titrated with \(\mathrm{HCl}\) requires \(11.23 \mathrm{~mL}\) of \(0.0983 \mathrm{M}\) \(\mathrm{HCl}\) to reach the end point. Calculate \(K_{s p}\) for \(\mathrm{Ca}(\mathrm{OH})_{2}\) Compare your result with that in Appendix D. Do you think the solution was kept at \(25^{\circ} \mathrm{C}\) ?
A \(30.0-\mathrm{mL}\) sample of \(0.150 \mathrm{M} \mathrm{KOH}\) is titrated with \(0.125 \mathrm{M} \mathrm{HClO}_{4}\) solution. Calculate the \(\mathrm{pH}\) after the following volumes of acid have been added: (a) \(30.0 \mathrm{~mL}\), (b) \(35.0 \mathrm{~mL}\), (c) \(36.0 \mathrm{~mL}\), (d) \(37.0 \mathrm{~mL}\), (e) \(40.0 \mathrm{~mL}\).
How many milliliters of \(0.0850 \mathrm{M} \mathrm{NaOH}\) are required to titrate each of the following solutions to the equivalence point: (a) \(40.0 \mathrm{~mL}\) of \(0.0900 \mathrm{M} \mathrm{HNO}_{3}\), (b) \(35.0 \mathrm{~mL}\) of \(0.0850 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\), (c) \(50.0 \mathrm{~mL}\) of a solution that con- tains \(1.85 \mathrm{~g}\) of \(\mathrm{HCl}\) per liter?
(a) Calculate the \(\mathrm{pH}\) of a buffer that is \(0.105 \mathrm{M}\) in \(\mathrm{NaHCO}_{3}\) and \(0.125 \mathrm{M}\) in \(\mathrm{Na}_{2} \mathrm{CO}_{3} .\) (b) Calculate the \(\mathrm{pH}\) of a solution formed by mixing \(65 \mathrm{~mL}\) of \(0.20 \mathrm{M}\) \(\mathrm{NaHCO}_{3}\) with \(75 \mathrm{~mL}\) of \(0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}\)
(a) Explain the difference between solubility and solubility-product constant. (b) Write the expression for the solubility-product constant for each of the following ionic compounds: \(\mathrm{MnCO}_{3}, \mathrm{Hg}(\mathrm{OH})_{2}\), and \(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.