Chapter 13: Problem 73
What is the osmotic pressure formed by dissolving \(44.2 \mathrm{mg}\) of aspirin \(\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)\) in \(0.358 \mathrm{~L}\) of water at \(25^{\circ} \mathrm{C} ?\)
Chapter 13: Problem 73
What is the osmotic pressure formed by dissolving \(44.2 \mathrm{mg}\) of aspirin \(\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)\) in \(0.358 \mathrm{~L}\) of water at \(25^{\circ} \mathrm{C} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solubility of \(\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\) in water is \(208 \mathrm{~g}\) per \(100 \mathrm{~g}\) of water at \(15^{\circ} \mathrm{C}\). A solution of \(\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\) in water at \(35^{\circ} \mathrm{C}\) is formed by dissolving \(324 \mathrm{~g}\) in \(100 \mathrm{~g}\). water. When this solution is slowly cooled to \(15^{\circ} \mathrm{C}\), no precipitate forms. (a) What term describes this solution? (b) What action might you take to initiate crystallization? Use molecular-level processes to explain how your suggested procedure works.
Oil and water are immiscible. What does this mean? Explain in terms of the structural features of their respective molecules and the forces between them.
A solution is made containing \(25.5 \mathrm{~g}\) phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)\) in \(425 \mathrm{~g}\) ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\). Calculate (a) the mole fraction of phenol, (b) the mass percent of phenol, (c) the molality of phenol.
List the following aqueous solutions in order of decreasing freezing point: \(0.040 \mathrm{~m}\) glycerin \(\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right), 0.020 \mathrm{~m}\) \(\mathrm{KBr}, 0.030 \mathrm{~m}\) phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)\).
Two beakers are placed in a sealed box at \(25^{\circ} \mathrm{C}\). One beaker contains \(30.0 \mathrm{~mL}\) of a \(0.050 \mathrm{M}\) aqueous solution of a nonvolatile nonelectrolyte. The other beaker contains \(30.0 \mathrm{~mL}\) of a \(0.035 \mathrm{M}\) aqueous solution of \(\mathrm{NaCl}\). The water vapor from the two solutions reaches equilibrium. (a) In which beaker does the solution level rise, and in which one does it fall? (b) What are the volumes in the two beakers when equilibrium is attained, assuming ideal behavior?
What do you think about this solution?
We value your feedback to improve our textbook solutions.