Chapter 13: Problem 52
Commercial concentrated aqueous ammonia is \(28 \% \mathrm{NH}_{3}\) by mass and has a density of \(0.90 \mathrm{~g} / \mathrm{mL}\). What is the molarity of this solution?
Chapter 13: Problem 52
Commercial concentrated aqueous ammonia is \(28 \% \mathrm{NH}_{3}\) by mass and has a density of \(0.90 \mathrm{~g} / \mathrm{mL}\). What is the molarity of this solution?
All the tools & learning materials you need for study success - in one app.
Get started for freeCarbon disulfide \(\left(\mathrm{CS}_{2}\right)\) boils at \(46.30^{\circ} \mathrm{C}\) and has a density of \(1.261 \mathrm{~g} / \mathrm{mL}\) (a) When \(0.250 \mathrm{~mol}\) of a nondissociating solute is dissolved in \(400.0 \mathrm{~mL}\) of \(\mathrm{CS}_{2}\), the solution boils at \(47.46^{\circ} \mathrm{C}\). What is the molal boiling-point-elevation constant for \(\mathrm{CS}_{2} ?\) (b) When \(5.39 \mathrm{~g}\) of a nondissociating unknown is dissolved in \(50.0 \mathrm{~mL}\) of \(\mathrm{CS}_{2}\), the solution boils at \(47.08^{\circ} \mathrm{C}\). What is the molecular weight of the unknown?
Calculate the number of moles of solute present in each of the following solutions: (a) \(185 \mathrm{~mL}\) of \(1.50 \mathrm{M}\) \(\mathrm{HNO}_{3}(a q)\), (b) \(50.0 \mathrm{mg}\) of an aqueous solution that is \(1.25 \mathrm{~m} \mathrm{NaCl}\), (c) \(75.0 \mathrm{~g}\) of an aqueous solution that is \(1.50 \%\) sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) by mass.
At ordinary body temperature \(\left(37^{\circ} \mathrm{C}\right)\) the solubility of \(\mathrm{N}_{2}\) in water in contact with air at ordinary atmospheric pressure \((1.0 \mathrm{~atm})\) is \(0.015 \mathrm{~g} / \mathrm{L}\). Air is approximately \(78 \mathrm{~mol} \% \mathrm{~N}_{2}\). Calculate the number of moles of \(\mathrm{N}_{2}\) dissolved per liter of blood, which is essentially an aqueous solution. At a depth of \(100 \mathrm{ft}\) in water, the pressure is \(4.0 \mathrm{~atm}\). What is the solubility of \(\mathrm{N}_{2}\) from air in blood at this pressure? If a scuba diver suddenly surfaces from this depth, how many milliliters of \(\mathrm{N}_{2}\) gas, in the form of tiny bubbles, are released into the bloodstream from each liter of blood?
The solubility of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) in water at \(20{ }^{\circ} \mathrm{C}\) is \(70 \mathrm{~g}\) per \(100 \mathrm{~mL}\) of water. (a) \(\mathrm{ls}\) a \(1.22 \mathrm{M}\) solution of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) in water at \(20^{\circ} \mathrm{C}\) saturated, supersaturated, or unsaturated? (b) Given a solution of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) of unknown concentration, \(w\) hat experiment could you perform to determine whether the new solution is saturated, supersaturated, or unsaturated?
Calculate the number of moles of solute present in each of the following aqueous solutions: (a) \(600 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{SrBr}_{2}\), (b) \(86.4 \mathrm{~g}\) of \(0.180 \mathrm{~m} \mathrm{KCl}\), (c) \(124.0 \mathrm{~g}\) of a solution that is \(6.45 \%\) glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) by mass.
What do you think about this solution?
We value your feedback to improve our textbook solutions.