Chapter 9: Problem 35
What is the distinction between a bond dipole and a molecular dipole moment?
Chapter 9: Problem 35
What is the distinction between a bond dipole and a molecular dipole moment?
All the tools & learning materials you need for study success - in one app.
Get started for freeFrom their Lewis structures, determine the number of \(\sigma\) and \(\pi\) bonds in each of the following molecules or ions: (a) \(\mathrm{CO}_{2} ;\) (b) cyanogen,\((\mathrm{CN})_{2} ;(\mathbf{c})\) formaldehyde, \(\mathrm{H}_{2} \mathrm{CO}\) (d) formic acid, HCOOH, which has one H and two O atoms attached to \(\mathrm{C}\) .
(a) What does the term paramagnetism mean? (b) How can one determine experimentally whether a substance is paramagnetic? (c) Which of the following ions would you expect to be paramagnetic: \(\mathrm{O}_{2}^{+}, \mathrm{N}_{2}^{2-}, \mathrm{Li}_{2}^{+}, \mathrm{O}_{2}^{2-} ?\) For those ions that are paramagnetic, determine the number of unpaired electrons.
Consider the \(\mathrm{H}_{2}^{+}\) ion. (a) Sketch the molecular orbitals of the ion and draw its energy-level diagram. (b) How many electrons are there in the \(\mathrm{H}_{2}+\) ion? (c) Write the electron configuration of the ion in terms of its MOs. (d) What is the bond order in \(\mathrm{H}_{2}^{+} ?\) (e) Suppose that the ion is excited by light so that an electron moves from a lower-energy to a higher-energy MO. Would you expect the excited-state \(\mathrm{H}_{2}^{+}\) ion to be stable or to fall apart? (f) Which of the following statements about part (e) is correct: (i) The light excites an electron from a bonding orbital to an antibonding orbital, (ii) The light excites an electron from an antibonding orbital to a bonding orbital, or (iii) In the excited state there are more bonding electrons than antibonding electrons?
Consider the molecule \(\mathrm{BF}_{3}\). (a) What is the electron configuration of an isolated B atom? (b) What is the electron configuration of an isolated F atom? (c) What hybrid orbitals should be constructed on the B atom to make the B–F bonds in \(\mathrm{B} \mathrm{F}_{3}\)?(d) What valence orbitals, if any, remain unhybridized on the B atom in \(\mathrm{BF}_{3} ?\)
Dichloroethylene \(\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}\right)\) has three forms (isomers), each of which is a different substance. (a) Draw Lewis structures of the three isomers, all of which have a carbon-carbon double bond. ( b) Which of these isomers has a zero dipole moment? (c) How many isomeric forms can chloroethylene, \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}\) have? Would they be expected to have dipole moments?
What do you think about this solution?
We value your feedback to improve our textbook solutions.