Chapter 9: Problem 110
(a) Using only the valence atomic orbitals of a hydrogen atom and a fluorine atom, and following the model of Figure 9.46, how many MOs would you expect for the HF molecule? (b) How many of the MOs from part (a) would be occupied by electrons? (c) It turns out that the difference in energies between the valence atomic orbitals of H and F are sufficiently different that we can neglect the interaction of the 1 s orbital of hydrogen with the 2\(s\) orbital of fluorine. The 1 s orbital of hydrogen will mix only with one 2\(p\) orbital of fluorine. Draw pictures showing the proper orientation of all three 2\(p\) orbitals on Finteracting with a 15 orbital on \(\mathrm{H} .\) Which of the 2\(p\) orbitals can actually make a bond with a 1\(s\) orbital, assuming that the atoms lie on the z-axis? (d) In the most accepted picture of HF, all the other atomic orbitals on fluorine move over at the same energy into the molecular orbital energy-level diagram for HF. These are called "nonbonding orbitals." Sketch the energy-level diagram for HF using this information and calculate the bond order. (Nonbonding electrons do not contribute to bond order.) (e) Look at the Lewis structure for HF. Where are the nonbonding electrons?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.