Chapter 9: Problem 103
The structure of borazine, \(\mathrm{B}_{3} \mathrm{N}_{3} \mathrm{H}_{6},\) is a six-membered ring of alternating \(\mathrm{B}\) and \(\mathrm{N}\) atoms. There is one \(\mathrm{H}\) atom bonded to each \(\mathrm{B}\) and to each \(\mathrm{N}\) atom. The molecule is planar. (a) Write a Lewis structure for borazine in which the formal charge on every atom is zero. (b) Write a Lewis structure for borazine in which the octet rule is satisfied for every atom. (c) What are the formal charges on the atoms in the Lewis structure from part (b)? Given the electronegativities of \(\mathrm{B}\) and \(\mathrm{N},\) do the formal charges seem favorable or unfavorable? (d)Do either of the Lewis structures in parts (a) and (b) have multiple resonance structures? (e) What are the hybridizations at the B and N atoms in the Lewis structures from parts (a) and (b)? Would you expect the molecule to be planar for both Lewis structures? (f) The six \(B-N\) bonds in the borazine molecule are all identical in length at 1.44 A. Typical values for the bond lengths of \(\mathrm{B}-\mathrm{N}\) single and double bonds are 1.51 \(\mathrm{A}\) and \(1.31 \mathrm{A},\) respectively. Does the value of the \(\mathrm{B}-\mathrm{N}\) bond length seem to favor one Lewis structure over the other? (g) How many electrons are in the \(\pi\) system of borazine?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.