Chapter 7: Problem 58
Discussing this chapter, a classmate says, "Since elements that form cations are metals and elements that form anions are nonmetals, elements that do not form ions are metalloids." Do you agree or disagree?
Chapter 7: Problem 58
Discussing this chapter, a classmate says, "Since elements that form cations are metals and elements that form anions are nonmetals, elements that do not form ions are metalloids." Do you agree or disagree?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Why does xenon react with fluorine, whereas neon does not? (b) Using appropriate reference sources, look up the bond lengths of \(\mathrm{Xe}-\mathrm{F}\) bonds in several molecules. How do these numbers compare to the bond lengths calculated from the atomic radii of the elements?
Write equations that show the process for (a) the first two ionization energies of lead and (b) the fourth ionization energy of zirconium.
Consider the first ionization energy of neon and the electron affinity of fluorine. (a) Write equations, including electron configurations, for each process. (b) These two quantities have opposite signs. Which will be positive, and which will be negative? (c) Would you expect the magnitudes of these two quantities to be equal? If not, which one would you expect to be larger?
The electron affinities, in \(\mathrm{kJ} / \mathrm{mol},\) for the group 1 \(\mathrm{B}\) and group 2 \(\mathrm{B}\) metals are as follows: (a) Why are the electron affinities of the group 2 \(\mathrm{B}\) elements greater than zero? (b) Why do the electron affinities of the group 1 \(\mathrm{B}\) elements become more negative as we move down the group? [Hint: Examine the trends in the electron affinities of other groups as we proceed down the periodic table.]
Consider the isoelectronic ions \(\mathrm{Cl}^{-}\) and \(\mathrm{K}^{+}\) . (a) Which ion is smaller? (b) Using Equation 7.1 and assuming that core electrons contribute 1.00 and valence electrons contribute nothing to the screening constant, \(S\) , calculate \(Z_{\text { eff}}\) for these two ions. (c) Repeat this calculation using Slater's rules to estimate the screening constant, \(S.\) (d) For isoelectronic ions, how are effective nuclear charge and ionic radius related?
What do you think about this solution?
We value your feedback to improve our textbook solutions.