Chapter 4: Problem 115
Federal regulations set an upper limit of 50 parts per million \((\mathrm{ppm})\) of \(\mathrm{NH}_{3}\) in the air in a work environment \([\mathrm{that}\) is, 50 molecules of \(\mathrm{NH}_{3}(g)\) for every million molecules in the air]. Air from a manufacturing operation was drawn through a solution containing \(1.00 \times 10^{2} \mathrm{mL}\) of 0.0105 \(\mathrm{M}\) HCl. The \(\mathrm{NH}_{3}\) reacts with HCl according to: $$\mathrm{NH}_{3}(a q)+\mathrm{HCl}(a q) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(a q)$$ After drawing air through the acid solution for 10.0 min at a rate of 10.0 \(\mathrm{L} / \mathrm{min}\) , the acid was titrated. The remaining acid needed 13.1 \(\mathrm{mL}\) of 0.0588 \(\mathrm{M} \mathrm{NaOH}\) to reach the equivalence point. (a) How many grams of \(\mathrm{NH}_{3}\) were drawn into the acid solution? (b) How many ppm of \(\mathrm{NH}_{3}\) were in the air? (Air has a density of 1.20 g/L and an average molar mass of 29.0 \(\mathrm{g} / \mathrm{mol}\) under the conditions of the experiment.) (c) Is this manufacturer in compliance with regulations?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.