Chapter 23: Problem 60
For a given metal ion and set of ligands, is the crystal-field splitting energy larger for a tetrahedral or an octahedral geometry?
Chapter 23: Problem 60
For a given metal ion and set of ligands, is the crystal-field splitting energy larger for a tetrahedral or an octahedral geometry?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe complex \(\left[\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\) contains five unpaired electrons. Sketch the energy-level diagram for the \(d\) orbitals, and indicate the placement of electrons for this complex ion. Is the ion a high-spin or a low-spin complex?
Carbon monoxide, CO, is an important ligand in coordination chemistry. When \(\mathrm{CO}\) is reacted with nickel metal, the product is \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\) which is a toxic, pale yellow liquid. (a) What is the oxidation number for nickel in thiscompound? (b) Given that \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) is a diamagnetic molecule with a tetrahedral geometry, what is the electron configuration of nickel in this compound? (c) Write the name for \(\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]\) using the nomenclature rules for coordination compounds.
Consider the tetrahedral anions \(\mathrm{VO}_{4}^{3-}\) (orthovanadate ion), \(\mathrm{CrO}_{4}^{2-}\) (chromate ion), and \(\mathrm{MnO}_{4}^{-}\) (permanganate ion). (a) These anions are isoelectronic. What does this statement mean? (b) Would you expect these anions to exhibit \(d-d\) transitions? Explain. (c) As mentioned in "A Closer Look" on charge-transfer color, the violet color of MnO \(_{4}^{-}\) is due to a ligand-to-metal charge transfer (LMCT) transition. What is meant by this term? (d) The LMCT transition in \(\mathrm{MnO}_{4}^{-}\) occurs at a wavelength of 565 \(\mathrm{nm} .\) The \(\mathrm{CrO}_{4}^{2-}\) ion is yellow. Is the wavelength of the LMCT transition for chromate larger or smaller than that for MnO \(_{4}^{-}?\) Explain. (e) The VO \(_{4}^{3-}\) ion is colorless. Do you expect the light absorbed by the LMCT to fall in the UV or the IR region of the electromagnetic spectrum? Explain your reasoning.
For each of the following compounds, determine the electron configuration of the transition-metal ion. \((\mathbf{a})\) TiO, \((\mathbf{b}) \mathrm{TiO}_{2},(\mathbf{c}) \mathrm{NiO},(\mathbf{d}) \mathrm{ZnO}\) .
For each of the following metals, write the electronic configuration of the atom and its \(2+\) ion: (a) \(\mathrm{Mn},(\mathbf{b}) \mathrm{Ru},(\mathbf{c}) \mathrm{Rh}\). Draw the crystal-field energy-level diagram for the \(d\) orbitals of an octahedral complex, and show the placement of the \(d\) electrons for each \(2+\) ion, assuming a strong-field complex. How many unpaired electrons are there in each case?
What do you think about this solution?
We value your feedback to improve our textbook solutions.