Chapter 21: Problem 89
Naturally found uranium consists of 99.274\(\%^{238} \mathrm{U}\) \(0.720 \%^{233} \mathrm{U},\) and 0.006\(\%^{233} \mathrm{U}\) As we have seen, \(^{235} \mathrm{U}\) is the isotope that can undergo a nuclear chain reaction. Most of the \(^{255}\) U used in the first atomic bomb was obtained by gaseous diffusion of uranium hexafluoride, UF \(_{6}(g) .\) (a) What is the mass of UF \(_{6}\) in a 30.0 -L vessel of UF \(_{6}\) at a pressure of 695 torr at 350 \(\mathrm{K} ?\) (b) What is the mass of \(^{235} \mathrm{U}\) in the sample described in part (a)? (c) Now suppose that the \(\mathrm{UF}_{6}\) is diffused through a porous barrier and that the change in the ratio of of \(^{238} \mathrm{U}\) and \(^{235} \mathrm{U}\) in the diffused gas can be described by Equation 10.23. What is the mass of \(^{235} \mathrm{U}\) in a sample of the diffused gas analogous to that in part (a)? (d) After one more cycle of gaseous diffusion, what is the percentage of \(^{235} \mathrm{UF}_{6}\) in the sample?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.