Chapter 21: Problem 77
In 2010, a team of scientists from Russia and the United States reported creation of the first atom of element 117, which is named tennessine, and whose symbol is Ts. The synthesis involved the collision of a target of \(_{97}^{249} \mathrm{Bk}\) with accelerated ions of an isotope which we will denote Q. The product atom, which we will call Z, immediately releases neutrons and forms \(_{97}^{249} \mathrm{Bk} :\) $$_{97}^{249} \mathrm{Bk}+\mathrm{Q} \longrightarrow \mathrm{Z} \longrightarrow_{117 \mathrm{Ts}}^{294 \mathrm{Ts}}+3_{0}^{1} \mathrm{n}$$ (a) What are the identities of isotopes Q and Z? (b) Isotope Q is unusual in that it is very long-lived (its half-life is on the order of 1019 yr) in spite of having an unfavorable neutron-to-proton ratio (Figure 21.1). Can you propose a reason for its unusual stability? (c) Collision of ions of isotope Q with a target was also used to produce the first atoms of livermorium, Lv. The initial product of this collision was \(_{116}^{296} \mathrm{Zn}\). What was the target isotope with which Q collided in this experiment?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.