Chapter 21: Problem 52
Based on the following atomic mass values \(-^{1} \mathrm{H}, 1.00782\) \(\mathrm{amu} ;^{2} \mathrm{H}, 2.01410 \mathrm{amu}\); \(^{3} \mathrm{H}, 3.01605 \mathrm{amu} ;^{3} \mathrm{He}, 3.01603\) \(\mathrm{amu} ;^{4} \mathrm{He}, 4.00260 \mathrm{amu}-\) amu—and the mass of the neutron given in the text, calculate the energy released per mole in each of the following nuclear reactions, all of which are possibilities for a controlled fusion process: \begin{equation}(\mathbf{a})\quad_{1}^{2} \mathrm{H}+_{1}^{3} \mathrm{H} \longrightarrow _{4}^{2} \mathrm{He}+_{1}^{0} \mathrm{n}\end{equation} \begin{equation}(\mathbf{b})\quad_{1}^{2} \mathrm{H}+_{1}^{2} \mathrm{H} \longrightarrow_{2}^{3} \mathrm{He}+_{0}^{1} \mathrm{n}\end{equation} \begin{equation}(\mathbf{c})\quad_{1}^{2} \mathrm{H}+_{2}^{3} \mathrm{He} \longrightarrow_{2}^{4} \mathrm{He}+_{1}^{1} \mathrm{H}\end{equation}
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.