Chapter 20: Problem 87
Iron corrodes to produce rust, \(\mathrm{Fe}_{2} \mathrm{O}_{3},\) but other corrosion products that can form are \(\mathrm{Fe}(\mathrm{O})(\mathrm{OH}),\) iron oxyhydroxide, and magnetite, \(\mathrm{Fe}_{3} \mathrm{O}_{4}\) . (a) What is the oxidation number of Fe in iron oxyhydroxide, assuming oxygen's oxidation number is \(-2 ?\) (b) The oxidation number for Fe in magnetite was controversial for a long time. If we assume that oxygen's oxidation number is \(-2,\) and Fe has a unique oxidation number, what is the oxidation number for Fe in magnetite? (c) It turns out that there are two different kinds of Fe in magnetite that have different oxidation numbers. Suggest what these oxidation numbers are and what their relative stoichiometry must be, assuming oxygen's oxidation number is - 2 .
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.