Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Indicate whether each statement is true or false: (a) The anode is the electrode at which oxidation takes place. (b) A voltaic cell always has a positive emf. (c) A salt bridge or permeable barrier is necessary to allow a voltaic cell to operate.

Short Answer

Expert verified
(a) True: The anode is the electrode at which oxidation takes place, where an atom or ion loses electrons. (b) True: A voltaic cell always has a positive emf, as it drives the spontaneous redox reaction. (c) True: A salt bridge or permeable barrier is necessary for a voltaic cell to operate, as it allows the flow of ions between the two half-cells, maintaining electrical neutrality.

Step by step solution

01

(Statement a: The anode is the electrode at which oxidation takes place.)

In a voltaic cell (also known as a galvanic cell), there are two electrodes (anode and cathode) submerged in appropriate electrolyte solutions, which are connected via a salt bridge or another device that allows ions to flow. At the anode, oxidation takes place. Oxidation is the process where an atom or ion loses electrons. This is true by definition, so the statement is true.
02

(Statement b: A voltaic cell always has a positive emf.)

The electromotive force (emf) of a voltaic cell represents the maximum possible voltage the cell can deliver. For a voltaic cell to work spontaneously, the overall cell reaction must be a redox reaction with a positive Gibbs free energy, meaning the reaction is thermodynamically favorable. By definition, a voltaic cell produces a positive emf, which drives the spontaneous redox reaction. Therefore, this statement is also true.
03

(Statement c: A salt bridge or permeable barrier is necessary to allow a voltaic cell to operate.)

A salt bridge or permeable barrier is an essential component of a voltaic cell, as it allows the flow of ions between the two half-cells, maintaining electrical neutrality. Without a salt bridge or permeable barrier, the buildup of positive and negative charges would cause the cell reactions to eventually stop. Thus, this statement is true as well.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

By using the data in Appendix E, determine whether each of the following substances is likely to serve as an oxidant or a reductant: (a) \(\mathrm{Cl}_{2}(g),(\mathbf{b}) \mathrm{MnO}_{4}^{-}(a q,\) acidic solution), (c) \(\mathrm{Ba}(s),(\mathbf{d}) \mathrm{Zn}(s) .\)

If the equilibrium constant for a one-electron redox reaction at 298 \(\mathrm{K}\) is \(8.7 \times 10^{4}\) , calculate the corresponding \(\Delta G^{\circ}\) and \(E^{\circ} .\)

Some years ago a unique proposal was made to raise the Titanic. The plan involved placing pontoons within the ship using a surface-controlled submarine-type vessel. The pontoons would contain cathodes and would be filled with hydrogen gas formed by the electrolysis of water. It has been estimated that it would require about \(7 \times 10^{8}\) mol of \(\mathrm{H}_{2}\) to provide the buoyancy to lift the ship (J. Chem. Educ., \(1973,\) Vol. \(50,61 )\) . (a) How many coulombs of electrical charge would be required? (b) What is the minimum voltage required to generate \(\mathrm{H}_{2}\) and \(\mathrm{O}_{2}\) if the pressure on the gases at the depth of the wreckage \((2\) \(\mathrm{mi}\) is 300 \(\mathrm{atm} ?(\mathbf{c})\) What is the minimum electrical energy required to raise the Titanic by electrolysis? (d) What is the minimum cost of the electrical energy required to generate the necessary \(\mathrm{H}_{2}\) if the electricity costs 85 cents per kilowatt-hour to generate at the site?

Complete and balance the following half-reactions. In each case indicate whether the half-reaction is an oxidation or a reduction. $$ \begin{array}{l}{\text { (a) } \mathrm{Mo}^{3+}(a q) \longrightarrow \mathrm{Mo}(s) \text { (acidic solution) }} \\ {\text { (b) } \mathrm{H}_{2} \mathrm{SO}_{3}(a q) \longrightarrow \mathrm{SO}_{4}^{2-}(a q) \text { (acidic solution) }} \\ {\text { (c) } \mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}(g)(\text { acidic solution })} \\ {\text { (d) } \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \text { (acidic solution) }} \\ {\text { (e) } \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \text { (basic solution) }} \end{array} \\\ {\text { (f) } \mathrm{Mn}^{2+}(a q) \longrightarrow \mathrm{MnO}_{2}(s) \text { (basic solution) }} \\ {\text { (g) } \mathrm{Cr}(\mathrm{OH})_{3}(s) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q) \text { (basic solution) }} $$

Copper corrodes to cuprous oxide, \(\mathrm{Cu}_{2} \mathrm{O},\) or cupric oxide, \(\mathrm{CuO},\) depending on environmental conditions. (a) What is the oxidation state of copper in cuprous oxide? (b) What is the oxidation state of copper in cupric oxide? (c) Copper peroxide is another oxidation product of elemental copper. Suggest a formula for copper peroxide based on its name. (d) Copper(III) oxide is another unusual oxidation product of elemental copper. Suggest a chemical formula for copper(II) oxide.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free