Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term reduction? (b) On which side of a reduction half-reaction do the electrons appear? (c) What is meant by the term reductant? (d) What is meant by the term reducing agent?

Short Answer

Expert verified
(a) Reduction is a process in which a molecule, atom, or ion gains electrons occurring in redox reactions. (b) In reduction half-reactions, electrons appear on the left side of the equation. (c) A reductant is a substance in a redox reaction that reduces another substance by providing it with electrons. (d) A reducing agent is a substance that reduces another substance by donating electrons during a redox reaction and becomes oxidized in the process.

Step by step solution

01

(a) Define reduction

In chemistry, reduction is a process in which a molecule, atom, or ion gains electrons. Reduction is a half-reaction that happens at the same time as the oxidation half-reaction, as part of redox (reduction-oxidation) reactions. In redox reactions, the substance that gains electrons gets reduced while the substance that loses electrons gets oxidized.
02

(b) Where do electrons appear in reduction half-reactions

In reduction half-reactions, the electrons appear on the left side of the equation, indicating that they are gained by the molecule, atom, or ion. For example, in the reduction half-reaction: \(\ce{Cu^{2+}} + 2e^- \rightarrow \ce{Cu}\), the electrons are on the left side, showing that the copper ion gains two electrons to become a neutral copper atom.
03

(c) Define reductant

A reductant, also known as a reducing agent, is a substance in a redox reaction that reduces another substance by providing it with electrons. In other words, the reductant becomes oxidized, losing electrons and causing the other substance to become reduced by gaining those electrons.
04

(d) Define reducing agent

A reducing agent, or reductant, is a substance that reduces another substance by donating electrons during a redox reaction. The reducing agent itself becomes oxidized in the process, meaning it loses electrons while the other substance gains electrons and is reduced. Reducing agents have the ability to transfer electrons from themselves to another substance, facilitating the reduction process.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For a spontaneous reaction \(\mathrm{A}(a q) \rightarrow \mathrm{A}^{-}(a q)+\) \(\mathrm{B}^{+}(a q),\) answer the following questions: (a) If you made a voltaic cell out of this reaction, what half-reaction would be occurring at the cathode, and what half-reaction would be occurring at the anode? (b) Which half-reaction from (a) is higher in potential energy? (c) What is the sign of \(E_{\text { cell }}^{\circ} ?[\) Section 20.3\(]\)

Indicate whether each statement is true or false: (a) The cathode is the electrode at which oxidation takes place. (b) A galvanic cell is another name for a voltaic cell. (c) Electrons flow spontaneously from anode to cathode in a voltaic cell.

Disulfides are compounds that have \(S-\) S bonds, like peroxides have \(O-O\) bonds. Thiols are organic compounds that have the general formula \(R-S H,\) where \(R\) is a generic hydrocarbon. The SH \(^{-}\) is the sulfur counterpart of hydroxide, OH \(^{-} .\) Two thiols can react to make a disulfide, \(\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}\) (a) What is the oxidation state of sulfur in a thiol? (b) What is the oxidation state of sulfur in a disulfide? (c) If you react two thiols to make a disulfide, are you oxidizing or reducing the thiols? (d) If you wanted to convert a disulfide to two thiols, should you add a reducing agent or oxidizing agent to the solution? (e) Suggest what happens to the H's in the thiols when they form disulfides.

The capacity of batteries such as the typical AA alkaline battery is expressed in units of milliamp-hours (mAh). An AA alkaline battery yields a nominal capacity of 2850 mAh. (a) What quantity of interest to the consumer is being expressed by the units of mAh? (b) The starting voltage of a fresh alkaline battery is 1.55 V. The voltage decreases during discharge and is 0.80 \(\mathrm{V}\) when the battery has delivered its rated capacity. If we assume that the voltage declines linearly as current is withdrawn, estimate the total maximum electrical work the battery could perform during discharge.

Cytochrome, a complicated molecule that we will represent as CyFe \(^{2+},\) reacts with the air we breathe to supply energy required to synthesize adenosine triphosphate (ATP). The body uses ATP as an energy source to drive other reactions (Section 19.7). At pH 7.0 the following reduction potentials pertain to this oxidation of \(\mathrm{CyFe}^{2+} :\) $$ \begin{aligned} \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & E_{\mathrm{red}}^{\circ}=+0.82 \mathrm{V} \\ \mathrm{CyFe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{CyFe}^{2+}(a q) & E_{\mathrm{red}}^{\circ}=+0.22 \mathrm{V} \end{aligned} $$ (a) What is \(\Delta G\) for the oxidation of CyFe \(^{2+}\) by air? (b) If the synthesis of 1.00 mol of ATP from adenosine diphosphate (ADP) requires a \(\Delta G\) of 37.7 \(\mathrm{kJ}\) , how many moles of ATP are synthesized per mole of \(\mathrm{O}_{2} ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free